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ABSTRACT
Numerous machine learning classifiers have been proposed for bi-
nary classification of domain names as either benign or malicious,
and even for multiclass classification to identify the domain genera-
tion algorithm (DGA) that generated a specific domain name. Both
classification tasks have to deal with the class imbalance problem of
strongly varying amounts of training samples per DGA. Currently,
it is unclear whether the inclusion of DGAs for which only a few
samples are known to the training sets is beneficial or harmful to
the overall performance of the classifiers. In this paper, we perform
a comprehensive analysis of various contextless DGA classifiers,
which reveals the high value of a few training samples per class
for both classification tasks. We demonstrate that the classifiers
are able to detect various DGAs with high probability by including
the underrepresented classes which were previously hardly rec-
ognizable. Simultaneously, we show that the classifiers’ detection
capabilities of well represented classes do not decrease.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; Malware
and its mitigation; •Computingmethodologies→Machine learn-
ing.
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1 INTRODUCTION
Domain generation algorithms (DGAs) are incorporated in many
malware families and used to determine the current location of a
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bot’s command and control (C2) server. These algorithms typically
generate a large amount of pseudo-random domain names in order
to impede the blocking of the bot’s communication. All of the
algorithmically generated domains (AGDs) are successively queried
by the bots. Most of the queries result in non-existent domain (NXD)
responses. The botnet herder is aware of the generation scheme and
thus able to predict and register a subset of the AGDs in advance.
When the bots query one of the registered domains they obtain a
valid IP address of their C2 server.

To detect infection with DGA based malware and prohibit it
from reaching its C2 server, machine learning classifiers can be
used to label domain names in monitored DNS queries as benign
or malicious. The classification result may then be used to block
connection attempts to C2 servers, may trigger additional mon-
itoring of the device that initiated the query, or may be used as
one of several indicators of compromise in an intrusion detection
system. This binary classification task has been addressed, not only
by classical feature-based approaches, such as random forests (RFs)
or support vector machines (SVMs) (e.g., [16]), but also by feature-
less approaches, such as recurrent (RNNs) or convolutional neural
networks (CNNs) (e.g., [14, 23, 25]). Variants of some of the above
classifiers have also been evaluated in the context of the more
challenging multiclass classification task of attributing AGDs to a
certain DGA family (e.g., [19, 21, 23]) narrowing down the malware
family and thus enabling targeted remediation measures.

In practice, only automated solutions which have a low false
positive rate are useful due to the large amount of data which
has to be processed. Therefore, it is important to analyze details
such as the effect of class imbalances on classifiers in order to
keep the false positive rate as low as possible. The performance
of machine learning classifiers depends on several factors such as
the type of the classifier, choice of hyperparameters, and probably
most important on the training data. A classifier always derives a
decision for a given input sample based on the data provided during
its training phase. Hence, the choice of the training data is crucial
for the classifier’s prediction performance. Considering the fact
that the sample distribution per DGA family is heavily imbalanced
it is not trivial to create adequate training data sets for either of
the two DGA classification tasks. Given that the OSINT feed of
DGArchive [13], e.g., contains the Dnsbenchmark DGA with overall
5 samples and the Virut DGA with over 22 million samples it is
not obvious how many samples per DGA should be included to
the training sets. In particular, it is unclear whether the inclusion
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of underrepresented DGAs in the training process is beneficial or
harmful for the overall performance of a classifier.

For binary classification, adding such samples could distract a
classifier and reduce its overall classification capability. Contrarily,
the classifier could increase its capability of separating AGDs of
these DGAs from benign samples without reducing the classifier’s
detection capability of well represented classes.

For multiclass classification, it has been shown in prior work [21]
that the overall performance of a classifier may be increased if the
class imbalance problem is properly addressed. However, it has not
been analyzed yet whether the inclusion of a few training samples
per DGA to the training set enables a classifier to correctly attribute
samples of those same DGAs. Likewise, the added samples could
have a negative impact on the attribution of the well represented
classes. In addition, in this setting, the question arises to which spe-
cific classes, i.e. the benign class or different DGA families, possible
out-of-distribution samples are classified to. Here, the inclusion of
underrepresented DGAs could either reduce or increase the rate of
falsely attributing malicious samples to the benign class.

Since there are usually only small amounts of samples known
for recently discovered DGAs, the question whether the inclusion
of such samples in the training set enables the detection of these
newly discovered DGAs is of great practical relevance.

In this paper, we address the mentioned issues by analyzing the
effect of class imbalances on classical machine learning approaches
(SVMs and RFs) as well as on deep learning based approaches (RNNs
and CNNs). In our comprehensive study, we use the same unified
experimental setup to evaluate the various classifiers and make
use of captured real-world traffic as well as AGDs generated by
91 different DGA families. We answer the aforementioned open
questions and show the great value of a few training samples per
class for both classification tasks. Thereby, we make a further step
into bringing the promising DGA classifiers into practical use.

2 RELATEDWORK
In the past, various approaches have been proposed in order to
detect DGA activities within networks. These approaches can be
divided into two groups: contextless approaches which operate
solely on the domain name that is to be classified (e.g., [14, 16, 19,
21, 23, 25]), and context-aware approaches which require additional
contextual information (e.g., [1, 2, 8, 15, 18, 24]). The advantage of
the contextless approaches is that they are typically less resource
intensive and intrusive than approaches which require additional
information.

The proposed machine learning classifiers can be further sepa-
rated into two additional groups: feature-based and deep learning
based approaches. Feature-based machine learning approaches such
as SVMs or different Decision Tree algorithms (e.g., RFs or C4.5
Decision Trees) are able to classify domain names as either benign
or malicious with high accuracy (e.g., [2, 16]). The performance of
these classifiers heavily depends on the utilized feature set. Hence,
a feature engineering step prior to the training of a classifier is
mandatory. Deep learning based approaches, on the other side,
do not require this as they learn to extract the relevant features
automatically during their training. Different types of deep learn-
ing classifiers, RNNs, CNNs, or combinations of both, have been

proposed for DGA binary (e.g., [14, 23, 25]) as well as for DGA
multiclass classification (e.g., [19, 21, 23]). While the deep learning
classifiers achieve comparable if not better classification results
compared to classical approaches, they lack in the explainability of
their decisions. For instance, the predictions of a decision tree can
be traced down by the individual features used for the classification.
Such a simple explanation is not possible for the predictions of deep
learning based approaches.

The class imbalance problem in general occurs in many areas
of application and has been extensively studied in the past. The
authors of [28] have shown that simple techniques to deal with this
problem, such as over- or undersampling, can have a negative im-
pact on the classification performance of a multiclass classifier. Sev-
eral more complex approaches such as AdaBoost [6], SMOTEBoost
[3], RUSBoost [17], Over- and UnderBagging [22], EasyEnsemble
[12], and BalanceCascade [12] have been proposed to cope with
class imbalances. In [7], a comprehensive study was conducted
which included several bagging-, boosting-, and hybrid-based ap-
proaches and identified RUSBoost as one of the best performing
approaches while being least complex.

In the context of DGA detection, the class imbalance problem has
been identified and partly investigated in [16, 21, 23]. The authors
of [21] studied a specific approach for DGAmulticlass classification
which achieves better results than RusBoost.

In more detail, in [16], the authors claim that their binary DGA
detection classifiers need at least a few hundred training samples per
DGA to work well, and therefore removed all DGAs with less than
250 unique training samples from their training sets. Woodbridge
et al. [23] identified that the class imbalances limit the capability
of their RNN-based DGA multiclass classifier to correctly attribute
domain names to the DGA, which generated them. The authors
increased the averaged classification performance by clustering
the 30 investigated DGA families into 11 super families. However,
thereby the identification of a specificmalware family is not possible
anymore which can be helpful for targeted remediation measures.
The authors of [21] addressed this issue by making the model of
[23] cost-sensitive. In order to achieve this, the authors introduced
a class weight 𝐶𝑖 for every class 𝑖 . These class weights control the
magnitude of the weight updates during the training process of a
model by weighting the loss function. Misclassified samples of class
𝑖 are now penalized with 𝐶𝑖 instead of 1. Increasing 𝐶𝑖 forces the
model to emphasizes more on class 𝑖 . The proposed class weights
𝐶𝑖 are defined as follows:

𝐶𝑖 =

( 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑖

)𝛾
𝛾 is a parameter which expresses howmuch the training data should
be rebalanced. Setting 𝛾 = 0 lets the model behave cost-insensitive.
When 𝛾 = 1 is chosen, the model values every class equally regard-
less of the available samples per class included in the training set.
The authors empirically determined 𝛾 = 0.3 to work well for their
RNN-based DGA multiclass classifier and demonstrated that their
approach achieves better results than RUSBoost.

Through this technique the authors were able to enhance the
classifier’s capability of correctly identifying DGAs of underrep-
resented classes. However, the effect on the classifier’s attribution
capability of well represented DGAs was not measured. Moreover,
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it is unclear to which classes out-of-distribution samples are attrib-
uted to, when underrepresented classes are left out of the training.
The main motivation to analyze this more closely is that it might
be better to train the classifier only on the well represented classes
in order to be able to correctly classify the major fraction of the
samples instead of including the underrepresented classes which
would enable the identification of an additional minor fraction but
possibly decrease the correct attribution of the samples which ap-
pear most of the time. In this paper, we thus complete the prior
results on RNN-based multiclass classifiers ([21, 23]) by answering
the open questions and show that the results hold true for other
types of classifiers as well.

For binary classification, it has not been studied so far whether
it is useful to include AGDs of DGAs into the training set for which
only a small number of samples is available. Adding these samples
could distract a classifier and reduce its overall classification capa-
bility. Contrarily, the classifier could increase its capability of sepa-
rating AGDs of these DGAs from benign samples without reducing
the classifiers detection capability of well represented classes.

In this work, we perform a comprehensive study to address the
aforementioned still open questions for the multiclass task and
address the question for the first time in the binary setting.

3 EVALUATION SETUP
In this section, we present the used data sources, the selected state-
of-the-art classifiers, and an overview of the different types of exper-
iments which we conduct to analyze the effect of class imbalances
on both DGA classification tasks.

3.1 Data Sources
We use two distinct data sources for the creation of representative
real-world data sets, one for benign and one for malicious domains.

3.1.1 Malicious Data: DGArchive. We obtain malicious domains
from DGArchive [13]. DGArchive is a database containing AGDs of
known DGAs which are generated by implementations of reverse
engineered DGAs. For our experiments we use all available samples
of DGArchive until October 1st, 2019. This data set contains approx-
imately 100 million unique AGDs generated by 91 different DGAs.

3.1.2 Benign Data: Large University Network. The central DNS re-
solver of the campus network of RWTHAachenUniversity serves as
source for benign data. This network incorporates several academic
and administrative networks, networks from student residences,
eduroam [5], and the networks of the university hospital of RWTH
Aachen. We extract domain names from captured non-resolving
DNS traffic (NX-traffic) instead of using full DNS traffic due to the
following two reasons. First, the amount of NX-traffic is signifi-
cantly smaller than the amount of full DNS traffic which eases the
monitoring. Second, observing the NX-traffic of a network enables
the detection of bot activities even before they are able to exfiltrate
any sensitive data, or to receive any commands to participate in any
malicious process. This is because most of the queried AGDs will
result in NXD responses before the bots are able to obtain the IP
address of their C2 server. From this source we obtain a one-month
recording of September 2019. In total, this recording comprises of
approximate 26 million unique NXDs.

This one-month recording includes versatile data and thus al-
lows for the creation of representative real-world data sets. The
captured benign NXDs originate mainly from misconfigured or
outdated software which tries to resolve domains that do not exist,
or from typing errors caused by humans. Besides that, the recording
includes benign AGDs which emerge from the intentional misuse
of the DNS. For instance, Google Chrome incorporates a DGA in
order to detect DNS hijacking attempts [26], and antivirus software
exchange signatures using AGDs via DNS [20]. In a data sanitation
step, we filter the captured domain names against the data from
DGArchive and remove all known malicious AGDs. The benign
AGDs remain in the data set and are further considered as benign.

3.2 Classifiers
In this section, we present the selected state-of-the-art classifiers.
We focus on contextless classifiers as they are less resource intensive
and intrusive compared to context-aware approaches while achiev-
ing state-of-the-art performance. We first present the currently best
feature-based approach and continue with three different types of
neural network classifiers.

3.2.1 FANCI. Currently, the best contextless feature-based ap-
proach for DGA binary detection is FANCI [16]. It implements
an SVM (FANCI-SVM) and an RF (FANCI-RF) classifier using 21
hand-crafted features of the following three categories: structural,
linguistic, and statistical features. FANCI does not incorporate mul-
ticlass classification off-the-shelf.

3.2.2 Endgame. Woodbridge et al. [23] propose RNN-based clas-
sifiers for the DGA binary and multiclass classification task. Both
classifiers use a long short-term memory (LSTM) layer consisting
of 128 hidden units with hyperbolic tangent activation. The differ-
ence between the two classifiers is that the LSTM output of the
binary classifier is consumed by a single node with sigmoid activa-
tion performing the logistic regression while the final layer of the
multiclass classifier is composed of as many nodes as classes are
present. The multinomial logistic regression and thus the attribu-
tion of an input to a specific class is performed using the softmax
activation function. In the following, we denote the binary classifier
by B-Endgame and the multiclass classifier by M-Endgame.

3.2.3 NYU. Zhang et al. [27] propose a character-level CNN with
six stacked 1-dimensional convolutional layers. While this model
was successfully applied to natural language text classification,
it tends to overfit domain names. This is caused by properties of
domain names such as missing grammatics and their typically small
length. Yu et al. [25] adapted this model and reduced the number
of CNN layers to two and the number of their filters to 128 for
DGA binary classification. In the following, we refer to the adapted
model as B-NYU. Similar to M-Endgame we adapted B-NYU to a
multiclass classifier and refer to it as M-NYU in the following.

3.2.4 ResNet. Recently, residual neural network (ResNet) based
classifiers have been proposed for both DGA classification tasks [4].
These classifiers are build up of residual blocks which introduce skip
connections between convolutional layers allowing the gradient to
bypass certain layers unaltered and thus avoid the vanishing gradi-
ent problem during training [9, 10]. The proposed binary classifier
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B-ResNet uses only one residual block with 128 filters per convolu-
tional layer while the multiclass classifier M-ResNet is composed
of eleven residual blocks with 256 filters per layer.

3.3 Experiments
In this section, we provide an overview of the different experiments
we conduct. We analyze the effect of class imbalances on the two
classification tasks separately.

3.3.1 Binary Classification. Here, we analyze whether or not it is
useful to include samples of DGA families into the training set of
binary classifiers for which only a small number of AGDs is known.
Currently, it is not clear whether the inclusion of these samples
has a positive or a negative effect on the overall classification per-
formance of a classifier. On the one hand, the classifier could learn
to distinguish AGDs of DGAs with little support from the benign
samples. On the other hand, the few included samples could distract
the classifier such that its overall performance decreases.

3.3.2 Multiclass Classification. We investigate the effect of class
imbalances on the multiclass task in two separate scenarios.

In the first scenario, the balanced scenario, we use only samples
from DGAs for which at least a pre-defined number of samples
exist for training. I.e., we enforce a balanced class distribution in
the training set. The reasoning for this is that the classifiers might
need at least a certain amount of samples per class in order to be
able to extract enough information for meaningful classification
results. Samples of DGAs with only little support in the training
set might distract the classifiers such that the overall classification
performance decreases.

In a second scenario, we investigate the class imbalance case by
including samples of all DGAs, even of those for which only a small
number of AGDs is known. Here, a few samples may already be
enough for the classifiers to learn discriminants which separate the
classes with little support.

In both of the scenarios, we deliberately exclude FANCI from
our study. To the best of our knowledge, there is currently no con-
textless feature-based approach for DGA multiclass classification.
While it is possible to reduce the multiclass classification to mul-
tiple binary classification problems the resulting classifier would
be of questionable quality as the currently utilized features are
engineered to distinguish benign from malicious domains and not
to discriminate different DGAs. Hence, we decided not to imple-
ment multiclass classification support for FANCI. For a promising
multiclass classifier new features have to be engineered.

3.3.3 Out-Of-Distribution Classification. Lastly, we investigate to
which classes out-of-distribution samples are attributed to, when
underrepresented classes are left out of the training.

4 EVALUATION
The performance of the classifiers is assessed by the f1-score, recall,
and precision. The f1-score is the harmonic mean of the recall and
the precision. The recall equals the true positive rate and measures
the ability of a classifier to identify positive samples. The precision
measures the fraction of true positives among those samples that
are labeled as positive by a classifier. When building averages, we

choose macro-averaging as it values each class with the same level
of importance despite the actual number of samples per class.

All deep learning models are executed on an NVIDIA Tesla V100
GPU using Python 3.6.8, Keras 2.3.1, TensorFlow 1.13.1, CUDA
10.0.130, and cuDNN 7.4.

For our analysis, we separate the 91 DGAs of DGArchive into two
groups: the well represented group consists of 46 DGAs for which
more than 10,000 AGDs per DGA are available. The remaining 45
DGAs, for which less than 10,000 samples per DGA exist, form the
weakly represented group.

4.1 Binary Classification
In Fig. 1, we provide an overview of the two different types of sets
we use in our binary evaluation: balanced, and imbalanced data
sets. The imbalanced testing data sets (B-Imbalanced-Test) include
for each of the 45 DGAs of the weakly represented group 20% of the
available samples. The imbalanced training data sets (B-Imbalanced-
Train) contain the remaining 80% of the samples of the weakly
represented group and additionally 10,000 random samples for each
of the 46 DGAs of the well represented group. We intentionally
do not include any AGDs of the well represented DGAs to the B-
Imbalanced-Test sets since we want to explicitly study how well
the underrepresented DGAs are detected in this setting. In the
B-Imbalanced-Train sets as well as in the B-Imbalanced-Test sets
we additionally add samples drawn uniformly at random from
the benign data source such that in each set an equal amount of
benign and malicious samples are present. We create 20 different
B-Imbalanced-Train and B-Imbalanced-Test data set pairs like this,
where each of the training sets has a cardinality of 1,045,648 and
each of the test sets contains 31,440 samples.

Further, we create 20 balanced training data sets (B-Balanced-
Train) which contain 11,366 samples for each DGA of the well
represented group, targeting the same amount of samples as in-
cluded in the B-Imbalanced-Train sets. Similar to the imbalanced
sets, these sets include as many benign samples as malicious sam-
ples. We intentionally increased the number of AGDs per DGA for
the B-Balanced-Train sets in order to guarantee that if a classifier
is trained on one of the two set types (balanced or imbalanced),
approximately the same number of training samples is available for
training. Lastly, we create 20 balanced testing sets (B-Balanced-Test)
consisting of 1,000 AGDs for every DGA which is included in the
B-Balanced-Train data sets and an equal amount of benign samples.

We use each training data set (B-Balanced-Train and B-Imbal-
anced-Train) to train an individual classifier which results in 40 clas-
sifiers per approach. Classifiers which are trained on B-Balanced-
Train are evaluated using every testing set (B-Balanced-Test and B-
Imbalanced-Test), resulting in 20 · 20 = 400 passes per approach and
set type. The classifiers which are trained using the B-Imbalanced-
Train sets are evaluated on the B-Balanced-Test sets in the sameway.
Prediction on the B-Imbalanced-Test sets is only performed by using
those classifiers for which the training and test set are fully disjoint.
This results in overall 20 evaluation passes per approach. The ratio-
nal is that if we perform the prediction on every B-Imbalanced-Test
set, it is highly probable that due to the small number of available
AGDs a big fraction of testing samples was already seen by a classi-
fier during training. Hence, by forcing this constraint, we can obtain
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B-Balanced-Train 

samples
well represented DGA

Size: 1,045,672
Benign: 522836
Malicious: 522836
46 DGAs:
11,366

20 x B-Imbalanced-Train 

samples
well represented DGA

Size: 1,045,648
Benign: 522824
Malicious: 522824
91 DGAs:
10,000

80% samples
weakly represented DGA

20 x

B-Balanced-Test 

samples
well represented DGA

Size: 92,000
Benign: 46,000
Malicious: 46,000
46 DGAs:
1,000

20 x B-Imbalanced-Test 
Size: 31,440
Benign: 15,720
Malicious: 15,720
45 DGAs:
20% samples

weakly represented DGA

20 x

Every classifier evaluates every test set: 20x20=400 evaluations  

Each classifier evaluates only the test set which is fully disjoint
with the classifier's training set: 20 evaluations

Figure 1: Binary Experiment Overview

more representative results. This is not required for the prediction
on the B-Balanced-Test sets because the included AGDs are drawn
uniformly at random from a sufficiently large pool for every DGA.

Table 1 depicts the averaged recall for the benign as well as for
the malicious class for the different classifiers and combinations of
training and testing sets. When prediction is performed on the B-
Balanced-Test sets, the individual classifiers achieve approximately
the same scores regardless of the utilized training set. Hence, we can
argue that the included samples of classes for which only a small
amount of AGDs is known has no major influence on the classifier’s
detection capability of DGAs which are well represented in the
training data. When prediction is performed on the B-Imbalanced-
Test sets, the recall of the malicious class is significantly lower for
the classifiers which are trained on the B-Balanced-Train data sets
compared to the classifiers which learned classification based on
the B-Imbalanced-Train sets. The recall for the benign class does
not differ much between any of the classifiers.

Table 2 shows the individual recall scores of the classifiers, when
they are trained on B-Balanced-Train and B-Imbalanced-Train sets,
for each individual DGA contained in the B-Imbalanced-Test sets.
Improvements of over 1% which are achieved by using B-Imbal-
anced-Train sets are printed in bold. The support denotes the num-
ber of samples which are included in the B-Imbalanced-Test sets.

All classifiers significantly profit from adding the DGAs of the
weakly represented group to the training sets. On average, the
recall of the deep learning based classifiers increases by 10.777%,
while FANCI-SVM improves by 4.3%, and FANCI-RF by 7.035%.
The feature-based approaches are slightly better in the detection
of unknown DGAs of the weakly represented group compared to
the deep learning classifiers. However, the deep learning classifiers
are better in detecting the DGAs of the weakly represented group
when samples of these DGAs are included in their training.

Consequently, these results show that domain names that are
generated by DGAs for which only a small amount of AGDs are

Table 1: Binary Experiment: Macro Averages of the Recall

B-Balanced-Test B-Imbalanced-Test
Classifier Training Data Benign Malicious Benign Malicious

FANCI-SVM B-Balanced-Train 0.99739 0.99921 0.99730 0.91798
FANCI-SVM B-Imbalanced-Train 0.99702 0.99924 0.99707 0.96097

FANCI-RF B-Balanced-Train 0.99736 0.99941 0.99726 0.91443
FANCI-RF B-Imbalanced-Train 0.99720 0.99939 0.99707 0.98479

B-Endgame B-Balanced-Train 0.99745 0.99991 0.99737 0.88780
B-Endgame B-Imbalanced-Train 0.99753 0.99991 0.99726 0.99714

B-NYU B-Balanced-Train 0.99761 0.99994 0.99750 0.88868
B-NYU B-Imbalanced-Train 0.99745 0.99994 0.99733 0.99842

B-ResNet B-Balanced-Train 0.99762 0.99985 0.99752 0.89318
B-ResNet B-Imbalanced-Train 0.99755 0.99984 0.99740 0.99740

known should be used as training samples in order to increase the
detection rate of those same DGAs. Thereby, we are able to increase
the recall for the malicious class on average by over 8.733% on the
B-Imbalanced-Test sets. In fact, already a small number of samples
per class is sufficient in order to increase the detection rate for those
classes significantly. For instance, for all classifiers but FANCI-SVM,
training on 168 samples of the Beebone DGA increases the recall
from 0% to over 99.5% for the 42 remaining available samples which
were not seen by the classifiers during training. For FANCI-SVM
the recall is improved by 31.667%. In general, we could significantly
increase the recall of 6 DGAs for FANCI-SVM, 12 DGAs for FANCI-
RF, and 10 DGAs for the deep learning based classifiers.

4.2 Multiclass Classification
To analyze the effect of class imbalances on the DGA multiclass
classification task, we create two different sets, one for the bal-
anced scenario (M-Balanced), and one for the imbalanced case
(M-Imbalanced). The M-Balanced set contains 10,000 random sam-
ples for the DGAs of the well represented group. Additionally, we
include 10,000 random samples of our benign data source. This
results in 46 malicious classes and one benign class and thus yields
an overall set size of 470,000 samples. The M-Imbalanced set addi-
tionally includes all samples of the DGAs of the weakly represented
group. In this set, we have overall 92 classes including the benign
class resulting in a set size of 548,544 samples. For both scenarios,
we perform 5 repetitions of a 5-fold cross validation where we split
the samples of each included class into 80% training and 20% testing
samples in every fold.

4.2.1 Balanced Scenario. We concentrate on cost-insensitive mod-
els here, as for each class the exact same number of samples is
included in the M-Balanced set and therefore the performances of
the models without class weighting do not deviate from the models
which incorporate class weighting.

Table 3 shows the averaged results for the different classifiers. All
classifiers achieve comparable results. The best performing model
is M-ResNet. To further visualize the classification performance,
we additionally provide its confusion matrix in Fig. 2. Each block
within the figure represents the fraction of samples (encoded as
shades of gray) of the DGA family on the vertical axis which is
labeled as a class on the horizontal axis. A perfect classifier would
correspond to an identity matrix of black blocks.



ARES 2020, August 25–28, 2020, Virtual Event, Ireland Drichel et al.

Table 2: Binary classification: individual recall scores of the classifiers, when they are trained on B-Balanced-Train and B-
Unbalanced-Train sets, for each individual DGA contained in the B-Unbalanced-Test sets.

FANCI-SVM FANCI-RF B-Endgame B-NYU B-ResNet
DGA Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Support

bedep 1.00000 1.00000 0.99859 0.99973 0.99904 0.99997 1.00000 1.00000 0.99995 1.00000 1492
beebone 0.00000 0.31667 0.00000 1.00000 0.00000 0.99524 0.00190 0.99881 0.00000 1.00000 42
blackhole 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 147
bobax 0.27250 0.27500 0.25058 0.41250 0.31046 0.99583 0.32325 0.99833 0.63492 0.99750 60
ccleaner 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 7
chir 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 20
darkshell 1.00000 1.00000 0.97938 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 8
diamondfox 0.97963 1.00000 0.96134 1.00000 1.00000 1.00000 1.00000 1.00000 0.99993 1.00000 108
dircrypt 1.00000 1.00000 0.99996 0.99978 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 230
dmsniff 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 14
dnsbenchmark 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1
downloader 1.00000 1.00000 1.00000 1.00000 0.00000 0.99167 0.00000 1.00000 0.00000 0.98333 12
ebury 1.00000 1.00000 0.99996 0.99988 0.99997 1.00000 1.00000 1.00000 0.99998 1.00000 400
ekforward 0.99976 0.99976 0.99996 1.00000 0.97929 1.00000 1.00000 1.00000 0.99983 1.00000 638
feodo 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 39
fobber 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99997 0.99975 400
goznym 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 73
gspy 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 10
hesperbot 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 36
madmax 0.49620 0.90924 0.49590 0.98424 0.49793 0.95054 0.49620 0.98587 0.49658 0.97826 92
makloader 1.00000 1.00000 0.95808 1.00000 1.00000 0.99951 0.99981 1.00000 0.99976 1.00000 103
mirai 1.00000 1.00000 0.98496 0.99464 0.57491 1.00000 0.56866 1.00000 0.57911 0.99732 56
modpack 1.00000 1.00000 0.77920 0.96364 0.99955 1.00000 1.00000 1.00000 1.00000 1.00000 22
omexo 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 4
pushdotid 0.99999 1.00000 0.99976 1.00000 1.00000 1.00000 0.99991 1.00000 0.99920 0.99988 1200
pykspa2s 1.00000 1.00000 0.99992 0.99997 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1992
qhost 1.00000 1.00000 0.91700 0.97000 1.00000 1.00000 1.00000 1.00000 0.99500 1.00000 5
ramdo 1.00000 1.00000 0.99970 0.99979 1.00000 1.00000 1.00000 1.00000 0.99998 1.00000 1200
randomloader 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.91250 1.00000 1
redyms 1.00000 1.00000 0.99250 0.99286 0.98464 0.99286 0.97643 1.00000 0.90036 0.98571 7
shifu 0.99569 0.99904 0.99986 0.99989 1.00000 1.00000 1.00000 1.00000 0.99995 1.00000 467
sisron 0.99763 1.00000 0.99752 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1979
sutra 0.66457 0.74408 0.66456 0.99871 0.66457 1.00000 0.67690 1.00000 0.71611 1.00000 1977
tempedreve 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 41
tempedrevetdd 1.00000 1.00000 0.99982 1.00000 1.00000 1.00000 1.00000 1.00000 0.99984 1.00000 330
tofsee 0.90301 1.00000 0.96952 1.00000 0.99966 1.00000 1.00000 1.00000 0.99988 1.00000 784
tsifiri 0.00000 1.00000 0.23229 1.00000 0.05000 0.95000 0.00000 0.95000 0.00000 0.95000 12
ud2 1.00000 1.00000 0.99989 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 93
ud3 1.00000 1.00000 1.00000 1.00000 0.90229 0.99583 0.97542 0.99583 0.98438 0.99167 12
ud4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 14
vawtrak 1.00000 1.00000 0.99986 0.99981 1.00000 1.00000 1.00000 1.00000 0.99919 0.99963 540
vidrotid 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 60
volatilecedar 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 100
xshellghost 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 12
xxhex 1.00000 1.00000 0.96938 0.99989 0.98877 0.99994 0.97195 0.99989 0.97653 0.99994 880

Average 0.91798 0.96097 0.91443 0.98479 0.88780 0.99714 0.88868 0.99842 0.89318 0.99740 349.333

It can be seen that the benign class can precisely be separated
from all other classes (f1-score of 0.99495). This result confirms
the statement of Lison and Mavroeidis [11] that using the same
neural network to detect whether a domain is benign or not and
simultaneously label the DGA family in case of a malicious sample
performs approximately equally well as using two different neural
networks optimized for the two tasks separately. Most DGA families
are easily recognizable, the DGA which is detected worst is Oderoor
with an f1-score of 0.26834. Most of its test samples are labeled as
Vidro. The f1-score of Vidro is 0.42385 and similarly a significant
fraction of its samples are labeled as Oderoor. This is due to the
fact that both DGAs generate AGDs with similar characteristics. In
fact, 79.092% of the available unique AGDs which are generated by
Oderoor are also generated by Vidro.

4.2.2 Imbalanced Scenario. In this scenario, we include the DGAs
of the weakly represented group. Thereby, the class distribution of
the training sets is no longer balanced. Thus, we additionally eval-
uate cost-sensitive models as proposed in [21] in this experiment.

Table 4 shows the achieved results of the classifiers for different
values of the rebalancing parameter 𝛾 (𝛾 ∈ {0.0, 0.1, ..., 1.0}). The
classifiers achieve their best results at different values of 𝛾 . M-
Endgame is best at 𝛾=0.9, M-NYU at 𝛾=0.7, and M-ResNet at 𝛾=0.2.
While M-Endgame profits initially from increasing 𝛾 , the achieved
scores stay quite stable after 𝛾=0.2 compared to the other classifiers.
M-NYU monotonically achieves better results up to 𝛾=0.7 but after
that the classifier’s performance degrades. M-ResNet profits at
least from the rebalancing and similarly to M-NYU, greater values
of 𝛾 have an negative impact on the classification performance.
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Table 3: Multiclass Classification: Balanced Scenario

Classifier F1-score Precision Recall

M-Endgame 0.87430 0.88151 0.87595
M-NYU 0.86657 0.87532 0.86873
M-ResNet 0.87682 0.88348 0.87860

Figure 2: Balanced Scenario: M-ResNet’s Confusion Matrix

Comparing the cost-insensitive model of M-ResNet with the best
cost-sensitive model yields an improvement of 0.531% while M-
Endgame improves by 4.231% and M-NYU by 6.371%. To further
compare the classification performance between the balanced and
imbalanced scenario, we provide the confusion matrix of M-ResNet
at 𝛾=0.2 in Fig. 3.

The averaged f1-score over all 92 classes is generally lower com-
pared to the averaged f1-score over the 47 classes of the balanced
scenario. However, the 46 malicious classes used in the balanced
scenario are detected approximately equally well in the imbalanced
scenario. The only exception is Pykspa2 since it generates similar
AGDs as its related DGA family Pykspa2s. The averaged difference
of the f1-scores of the DGAs of the well represented group between
the two scenarios is below 1% when Pykspa2s is excluded from this
calculation. While the classifier is not able to unambiguously sepa-
rate Pykspa2 from Pykspa2s it is still able to delimit these classes
from the benign class. Similar to the balanced scenario, the benign
class can precisely be separated from the malicious classes (f1-score
of 0.99427). The biggest outlier is Dnsbenchmark whose f1-score de-
pends on the classification of a single sample that is included in the
test set of a fold. For 22 of the 46 additional classes included in the
unbalanced scenario, compared to the balanced case, the classifier
is able to achieve an f1-score of more than 0.90, and for 11 classes
even an f1-score of more than 0.99. These results show that the

Table 4: Multiclass Classification: Imbalanced Scenario

𝛾 Classifier F1-score Precision Recall

0.0
M-Endgame 0.71814 0.73534 0.71914
M-NYU 0.68654 0.71485 0.68559
M-ResNet 0.78299 0.80944 0.78521

0.1
M-Endgame 0.73051 0.74829 0.73135
M-NYU 0.70366 0.73134 0.70274
M-ResNet 0.78618 0.80822 0.79045

0.2
M-Endgame 0.74462 0.76429 0.74590
M-NYU 0.72471 0.75340 0.72452
M-ResNet 0.78830 0.80730 0.79523

0.3
M-Endgame 0.75176 0.76989 0.75437
M-NYU 0.74241 0.76486 0.74619
M-ResNet 0.78675 0.79840 0.79738

0.4
M-Endgame 0.74577 0.75849 0.75135
M-NYU 0.74310 0.76370 0.74983
M-ResNet 0.78714 0.79570 0.79931

0.5
M-Endgame 0.75355 0.76828 0.75984
M-NYU 0.74677 0.76190 0.75772
M-ResNet 0.78472 0.79284 0.80043

0.6
M-Endgame 0.75566 0.76456 0.76544
M-NYU 0.74784 0.75811 0.76327
M-ResNet 0.77552 0.77964 0.79957

0.7
M-Endgame 0.75610 0.76633 0.76708
M-NYU 0.75025 0.75591 0.77384
M-ResNet 0.76663 0.76825 0.79841

0.8
M-Endgame 0.75983 0.76796 0.77409
M-NYU 0.73645 0.73834 0.76972
M-ResNet 0.75000 0.74859 0.79561

0.9
M-Endgame 0.76045 0.76638 0.77883
M-NYU 0.70960 0.71128 0.75840
M-ResNet 0.70330 0.70131 0.76831

1.0
M-Endgame 0.75832 0.76242 0.78409
M-NYU 0.65598 0.66338 0.72583
M-ResNet 0.61585 0.62699 0.70072

inclusion of a few samples per DGA family already enables the clas-
sifier to correctly attribute AGDs generated by several DGAs with
high probability. Moreover, the detection rate of well-represented
classes is not negatively affected.

4.2.3 Out-Of-Distribution Classification. In this section, we an-
alyze to which class possible out-of-distribution samples are at-
tributed to, when the DGAs of the weakly represented class are
omitted from the training of a classifier. For each deep learning
based approach, we train 20 classifiers using the samples of the
well represented group included in the M-Imbalanced set. We then
perform classification on the samples of the weakly represented
group within the M-Imbalanced set. The average classification re-
sults for all approaches are very similar. As an example we display
the results of M-ResNet in Fig. 4.

The out-of-distribution samples are not only spread over the
malicious classes but also a huge fraction of the samples is attributed
to the benign class. Hence, e.g., a multiclass classification module
of an intrusion detection system would miss these samples entirely.
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Figure 3: Imbalanced Scenario: M-ResNet’s Confusion Matrix at 𝛾=0.2

These results show that it is highly recommendable to include
samples of less represented DGAs to the training sets of machine
learning classifiers in order to reduce the possible misattribution of
out-of-distribution samples to the benign class.

5 CONCLUSION
In this paper, we analyzed the effect of class imbalances on the DGA
binary and multiclass classification task using a considerable data

set that includes 91 malicious classes and real-world benign data.
To this end, we evaluated the classification performance of SVMs,
RFs, RNNs, CNNs, and ResNet-based classifiers and demonstrated
the high value of a few training samples per class for all classifiers
and classification tasks.

For the binary task, we showed that by the inclusion of a few
training samples the classifiers’ capabilities of detecting underrepre-
sented DGAs can be increased significantly without decreasing the
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Figure 4: M-ResNet’s Out-Of-Distribution Classification

detection rates of well represented DGAs. In particular, we could
improve the classifiers’ recall for the weakly represented DGAs by
10.777% for the deep learning based classifiers and by 5.6675% for
the feature-based approaches.

For the multiclass task, we demonstrated that already a few
training samples enable the classifiers to correctly attribute sev-
eral DGAs with high probability without negatively affecting the
attribution rate of well represented classes. For 22 of 46 underrep-
resented classes the ResNet-based classifier was able to achieve
f1-scores of over 0.90 and for 11 DGAs even over 0.99.

Moreover, in our evaluation, we demonstrated that when under-
represented classes are left out of the training a huge fraction of
out-of-distribution samples is falsely attributed as benign.

Consequently, these results show that underrepresented DGAs
should be included in the training sets for both classification tasks.
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