2020 IEEE Symposium on Visualization for Cyber Security (VizSec)

Interpretable Visualizations of Deep Neural Networks for Domain
Generation Algorithm Detection

Arthur Drichel
RWTH Aachen University

Franziska Becker*
University of Stuttgart

ekforward

prosikefan

Christoph Miiller*
University of Stuttgart

name
type

Thomas Ertl¥ Senior Member, IEEE
University of Stuttgart

convid
ConviD

o)

dtype float32 ) T 2
output shape (None, 253, 128) 6 8 2
parameters 49280 =i =7 2
10 ” 609 2 m 569 A A g
[} [l 2
2k Z K
@ o =
o o =3
—— [h:. o (S g
eldorvard locky necurs prosikefan qsnatch  shifu  simda ma_comsec
= max_canse i
2
=
v
o max_canse i
o
8
53 S5
o =
(=t =
=3
v o2
© =
a 2
t=3 S
=) A
i
=
o
@
=}
imber_afio

Tlaquinu

number_ratio

Figure 1: The analysis view for the first convolutional layer of the CNN (for domains with length in [8,10] and top-level domain eu): a)
2D projection of the activations, displaying cluster and class membership. b) Calculated decision tree for the cluster labels, which
uses length as the primary separator. ¢) Voronoi diagram of the 2D projection, showing the separation in the last decision tree level.

d) Layer information and per-class cluster distribution.

ABSTRACT

Due to their success in many application areas, deep learning models
have found wide adoption for many problems. However, their black-
box nature makes it hard to trust their decisions and to evaluate their
line of reasoning. In the field of cybersecurity, this lack of trust
and understanding poses a significant challenge for the utilization of
deep learning models. Thus, we present a visual analytics system
that provides designers of deep learning models for the classification
of domain generation algorithms with understandable interpretations
of their model. We cluster the activations of the model’s nodes and
leverage decision trees to explain these clusters. In combination with
a 2D projection, the user can explore how the model views the data
at different layers. In a preliminary evaluation of our system, we
show how it can be employed to better understand misclassifications,
identify potential biases and reason about the role different layers in
a model may play.
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1 INTRODUCTION

Deep learning models have proven successful in many different
domains from facial recognition and natural language processing
to complex real-time strategy games [34], making it desirable to
employ them in the context of cybersecurity as well. However, the
black-box nature of such models means that their results cannot be
trusted or evaluated easily. This makes their application to problems
in cybersecurity difficult, where decisions often involve human oper-
ators and may have severe consequences. The rapidly growing field
of explainable artificial intelligence (XAI) addresses such problems
by providing insight into machine learning models in order to better
understand their inner workings, improve the trust of model users or
comply with legislation [1, 10].

In this work, we present our first steps towards a visual analytics
system for designers of deep learning models that helps them to
explore decisions their models make. Designers of deep learning
models are faced with many challenges when developing new mod-
els, which consist of thousands to millions of trainable parameters
and many possibilities to assemble the architecture. In addition, data
may contain artifacts that can lead to biases in the model, which
can be hard to find using only performance metrics or simple data
exploration. The goal of our system is to provide model developers
with the opportunity to investigate their model’s performance, how
and when it separates data and derive possible measures by which to
improve their model.

Using our system, we evaluate and visualize two different types
of deep learning-based classifiers for multi-class domain genera-
tion algorithm (DGA) detection, for which high-performance deep
learning-based classifiers have recently been developed [35,37]. One
model is based on convolutional neural networks (CNNs) [37] and



the other is based on recurrent neural networks (RNNs) [35]. Both
classifiers are trained using real-world benign data, captured at the
central DNS resolver of RWTH Aachen University, and malicious
data obtained from DGArchive [22]. The data set utilized comprises
an approximate total of 540,000 unique data points consisting of 92
different classes.

2 RELATED WORK

In this section, we discuss related work for our application domain
of deep learning models for DGA detection, as well as research
efforts in visual analytics for cybersecurity and explainable artificial
intelligence.

2.1 DGA Detection Models

Botnets rely on domain generation algorithms to establish a con-
nection to their command and control (C2) server. These DGAs
periodically generate a large number of algorithmically-generated
domains (AGDs), which serve as rendezvous points for the botnet.
The bots query all of the AGDs, but only the ones registered by
the botnet herder in advance resolve to valid IP addresses. This
way, blocking connection attempts of a bot to its C2 server is more
difficult compared to the use of fixed IP addresses or fixed domain
names.

In the past, several approaches, which differ in the amount of in-
formation needed for classification, have been proposed to separate
benign domains from malicious AGDs. The classification of context-
less approaches (e.g. [8,25,28,35,37]) is based solely on the domain
name that is to be classified. In contrast, context-aware approaches
(e.g.[2,4,9,26,29,36]) leverage additional contextual information
trying to enhance the classification. Prior work (e.g. [8,28,35,37])
shows that the contextless approaches are able to solve this binary
classification task with state-of-the-art performance and are, in con-
trast to context-aware approaches, less resource-intensive and less
intrusive regarding privacy.

Within the group of contextless approaches, two types of machine
learning classifiers have been proposed: feature-based classifiers
such as support vector machines (SVMs) or random forests (RFs)
(e.g. [28]), and featureless models such as convolutional or recurrent
neural networks (e.g. [8,25,35,37]). While the deep learning classi-
fiers achieve superior classification performance [8,20,33,35], they
fall short in the explainability of their predictions.

While the binary classification task has been intensively studied
in the past, the more challenging task of attributing domain names
to a specific DGA, which generated a malicious domain name, is
less well studied. The advantage of this multi-class classification is
that it ultimately enables the identification of the malware family
that generated a specific malicious domain and thus enables targeted
remediation measures. To the best of our knowledge, there is cur-
rently no contextless feature-based approach for DGA multi-class
classification.

2.2 Visual Analytics for XAl

Recent years have seen an increased interest in the connection of
visual analytics and explainable machine learning models [1, 10],
allowing for insight into the inner workings of models previously
treated as black boxes.

Attribution methods (e.g. [3,30,38]) show which regions of the
input data, such as pixels or characters, contribute most to a par-
ticular classification. In contrast, feature visualization methods
(e.g. [6,14,16,18]) try to generate the features that maximally acti-
vate a particular node or class, using optimization with different
strategies for regularization and diversity. More recently, Olah
etal. [19] managed to combine feature visualization and attribu-
tion to allow the user to gain a more complete picture of the model’s
behavior, and Carter etal. [6] compute large-scale 2D projections of
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generated features to provide the user with a global map of what the
model has learned to detect.

On the side of visual analytics, many new systems have been
developed to evaluate, understand or improve machine learning mod-
els. With ‘Squares’ [23], the authors developed a system to compare
and evaluate the performance of classification models. Other work
(e.g. [21,32]) has produced visual analytics systems to interactively
assess a model during training in order to improve it. Smilkov
etal. [31] use different 2D and 3D projections to visualize word
embeddings or image data sets. This allows the user to find global
clusters, explore local neighborhoods and potentially discover mean-
ingful directions in the projected space. However, such exploration
is increasingly complicated for data with no intuitive interpretations.
Exploring global structures is also difficult if single data points can-
not be fully displayed (due to space limitations) or if there is much
overdraw.

Prior work in this field has often focused on applications that
work with image data, especially for feature visualization, which to
our knowledge has not been successfully transferred to other types
of data. In addition, even when methods can be applied to other data
types, they are rarely tested for hard data, i. e. data without intuitive
semantics. While humans excel at understanding natural images,
language or music, their performance deteriorates for artificial data
like sequences of pseudo-randomly generated characters, as is the
case for many AGDs. Our method provides a supplementary ex-
planation in the form of a decision tree that aims to alleviate this
problem, making it possible to explore model decisions for hard
data.

2.3 Visual Analytics for Cybersecurity

In the domain of cybersecurity, vast amounts of data are generated
on a daily basis. Attack patterns constantly evolve and adapt, re-
quiring the same of cybersecurity experts and their tools. To tackle
these challenges, using the power of visual analytics for cyberse-
curity applications has been gaining more traction in the research
community.

Many visual analytics systems in cybersecurity have a specific
application case and are intended to be used by respective domain
experts. Related topics range from privacy, anomaly detection and
network traffic analysis to malware detection. [12]

Our approach is among a few that try to bring deep learning mod-
els and the advantages they provide into the domain of cybersecurity
by helping users evaluate and interpret their models. Related work
in a similar direction, but with a different goal, includes the explo-
ration of adversarial examples by Norton [17] and Kahng [11]. Both
works provide a web-based interactive playground to explore the
generation of adversarial examples. Their goal is to educate the user
on how adversarial examples are constructed and how they affect
the classification. However, both works are limited in what data they
use for their interface. Norton considers a subset of the MNIST [13]
data set, i. e. small black and white images of hand-written digits,
while Kanhg uses synthetic 2D data with a user-specified distribu-
tion. This makes it hard to use their approaches for data with less
intuitive semantics and even then, constructing interpretations from
the examples is left to the user.

3 OUR VISUAL ANALYTICS APPROACH

In the following, we describe our design goals, related tasks and the
structure of our resulting visual analytics system.

3.1

The visualizations we developed aim to assist model developers
who are intimately familiar with the working mechanisms of deep
neural networks as well as the structure of their model. To formalize
our main design goals, we surveyed previous work in the area of
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XAI [7,10,24] and conducted an informal interview with a model
developer who works on our application case:

DG1: Visualize different types of deep learning models. Since
we have different types of deep learning models at our disposal,
trained on the same data to solve the same classification task, a
system that works for any kind of deep learning model is an impor-
tant goal. In general, a deep-learning model has nodes (or neurons)
which are packed into different layers and connected by weighted
links. During training, these weights are modified in a way to in-
crease the model’s performance, making them a good candidate to
try to understand how deep learning models work. However, the
trained weights alone are only one part of the what determines the
result, leaving out the bias term as well as the non-linear activation
function used inside the model. Therefore, to provide a more com-
plete picture in a (deep learning) model-agnostic fashion, we focus
on how the different layers of the model are activated by specific
data.

DG2: Explain patterns model layers find. To better understand
how the model arrives at its results, we want to explore which ex-
planations can be extracted from patterns inside the different model
layers. As we deal with data that does not necessarily exhibit intu-
itive semantics to a human, the system must provide a mechanism
to describe instances, groups or patterns of the data in a way that is
interpretable by the user.

DG3: Provide an overview of the data and model performance.
Deep learning models commonly require large amounts of data
to train on, which makes it hard for the model developer to have
detailed knowledge about peculiarities the data may contain. In addi-
tion, finding interesting subsets to consider for in-depth investigation
is difficult without some form of overview of the complete data set.

3.1.1

Using our previously formulated design goals together with our
user’s comments, we identified several tasks that our visual analytics
system should address.

Tasks

T1: Investigate causes for misclassification. Especially when
there is a large number of classes, causes for class confusion are not
readily apparent from consulting examples or a confusion matrix.
However, in order to improve a model’s performance, understanding
of how such confusion arises is vital. This task requires the user
to be able to find and select misclassified data (DG3) and explore
patterns like a common feature value (DG2).

T2: Find possible sources of bias. A trust-worthy model is one
with little to no bias. This is hard to achieve, particularly when
large amounts of data are used for training and it is difficult for
the user to manually remove bias from the data or find it in the first
place. Similarly to the first task, the user needs information about the
data to formulate a hypothesis (DG3) and then verify its correctness
(DG2).

T3: Explore the role of different layers. In relation to DG1 and
DG2, the user may gain a better understanding of the roles of differ-
ent types of layers in a deep learning model by exploring the data
layer by layer and comparing layers of the same type across models.
This may facilitate transfer learning by giving the user an idea which
layers could be useful to speed up the development of new models
for different problems.

3.2 Visual Analytics System

The visual analytics system consists of several separate workspaces,
including one for data exploration & selection and one for analy-
sis of the progression that instances make across the different layers
of a model.
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Figure 2: Histogram matrix segment showing the two rows of the
chinad (top) and chir classes (bottom) for the CNN. The latter row
shows that the chir class contains only a small number of instances,
all of which are predicted to be members of the chinad class.

3.2.1 Data Exploration & Selection

To address design goal DG3, this workspace provides an overview
of the complete data set and functions as a means of specifying a
customized selection.

Because of the large number of classes in the data set, we chose a
compact visualization where each class is represented by a row in a
histogram matrix. The three columns of the matrix contain values
for the three features we found to give a good general overview of
the data: prediction, length and character frequency (cf. Fig. 2). The
prediction column displays how many instances are predicted for
each class, using that class’ unique id for the x-axis placement. This
enables the user to see how the model performed for the various
classes and where class confusion may exist. The other columns
allow the user to identify potentially interesting subsets since DGAs
often use only a special set of lengths and characters.

The bars’ color scale encodes the relative relationship to the
largest value for that column in the whole data set, preventing per-
ception problems that may occur when trying to use a global height
scale for all bars and showing any differences in class representation.
The user can interact with the histograms in order to select a subset
of the data, which is then used inside the analysis work space. In
addition, we provide an interactive user interface (UI) where the user
can define more complex subsets, using additional attributes such
as class membership, the correctness of the classification, or regular
expressions the domains should match.

3.2.2 Analysis

The analysis workspace is the centerpiece of our system, addressing
design goal DG2. For each layer /; of the model, the following
transformation pipeline is executed in order to compute the necessary
data needed for the different visualizations in this workspace:

1. Calculate the activations a; of the model nodes for the current
layer /;.

2. Reduce the dimensionality of a; using principal component
analysis (PCA) to get act/.

3. Perform unsupervised clustering on a; employing the HDB-
SCAN [5] algorithm.

4. Reduce the dimensionality ag to 2 dimensions using the
UMAP [15] algorithm.

5. Train a decision tree to predict the cluster labels.

The first visualization computed from this data is a scatter plot with
density contours (see Fig. 1a) which displays a 2D projection of
the activation data for the current layer. Each glyph represents a
data point, colored according to its cluster membership and scaled
depending on the magnitude of its activation vector. In order to
visually identify misclassified instances, they are plotted as triangles
instead of circles. In the background, density contours are drawn for
each class in the selection. These visual encodings allow the user to
combine the information of class membership, cluster membership
and classification correctness at a glance.

In Fig. 1b, we draw the trained decision tree as an icicle plot,
where the color of a leaf node is chosen according to its cluster.
Intermediate nodes have the same color as their child with the most



assigned instances. To visually connect the 2D projection with the
decision tree, we provide a complementary visualization (see Fig. 1¢)
that displays the Voronoi diagram of the projected data points. The
user can interactively switch between the branching levels of the
decision tree by clicking on the level label, which automatically
updates the Voronoi diagram. This allows for exploration of how the
separation of the clusters is constructed by the decision tree. Finally,
in Fig. 1d we show some information about the currently selected
layer as well as an overview of the per-class cluster distribution.

The transformation pipeline is sequentially executed for each
layer and the user may switch between the resulting visualizations
as he sees fit. In order to support the user’s ability to find correspon-
dences between the scatter plots of the different layers, we employ
an orthogonal procrustes method [27] to find the best rotation to
align any layer with its predecessor and smoothly transition between
the two using animation.

4 RESULTS

This section discusses the preliminary results we observed for tasks
T1 to T3 when using our visual analytics system with a CNN and a
RNN trained for multi-class DGA detection. The CNN [37] consists
of five trainable layers, including two 1-dimensional convolutional
layers, while the RNN [35] is based on a long short-term memory
layer and combines three trainable layers in total. We choose specific
subsets of the data set in order to demonstrate the advantages our tool
provides and prove that our system is able to address the previously
defined tasks.

T1 Using the overview visualization in the selection workspace,
we find out that the CNN has trouble with the class chir, whose
instances are all predicted to be members of class chinad. We can
also see that the chir class consists of a much smaller number of
instances, has instances with similar length but uses a smaller subset
of characters than the chinad class. In order to investigate this
misclassification, we select both classes and switch to the analysis
view. For the first layer, we can see that more than half of all
instances are not assigned to a cluster and that there is much overlap
between the two classes in regard to both cluster membership as well
as spatial positioning. In subsequent layers, the number of instances
assigned to a cluster fluctuates and we observe several occurrences
where the misclassified instances form clearly separated clusters.
The decision tree also finds explanations for these clusters, although
the clusters cannot be perfectly separated and still include some
chinad instances. While the CNN model seems to be capable of
separating both classes in intermediate layers it fails to discriminate
these two classes at the final output layer. We suspect that this
behavior is caused by the fact that the chir class is overshadowed
by the large number of chinad instances. The output layer is used
for the final attribution and biased to the better represented class,
while we believe that the intermediate layers learn to extract features
and benefit from all samples during training and not just from a
single class. For comparison, we inspect the same selection for the
RNN. Surprisingly, we see that it has no problems separating the two
classes and the corresponding decision tree uses the same features
as the one for the CNN for the separation.

T2 To find potential biases, we inspect the overview visualiza-
tion to find that only a small number of classes include more than
one hyphen in their domains. Selecting all domains with at least two
hyphens contains the two malicious classes matsnu and tsifiri as well
as the benign class. The analysis view then reveals that both models
quickly separate these classes. However, the decision trees show
that for many layers most of the benign instances can be separated
based only on their length and maximum number of consecutive
consonants. This finding may present an opportunity to craft and
test adversarial examples for this particular model, which requires
further work.

28

T3 To determine the roles of the convolutional layers of the
CNN, we investigate how many clusters they find and how these are
separated. To achieve this, we investigate several selections: We
limit the data either to a particular top-level domain or to a fixed
length range. When the top-level domain is fixed, we always find
two clusters and some unassigned instances in the fist convolutional
layer. One cluster only contains a single class while the other cluster
is mixed. All decision trees employ length to separate the bulk of
these two clusters.

In case of the fixed length range, we find two to three clusters, with
one mixed cluster for all ranges except one, which only includes two
different classes that are perfectly separated by the clustering. Here,
the decision trees primarily use the top-level domain to separate
clusters. For all selections, later layers use more complex features
such as the maximum number of consecutive consonants or digits to
split the data, although the number of clusters does not necessarily
increase.

These observations indicate that the first convolutional layer most
strongly reacts to variations in length and top-level domain, which
is expected given that many DGAs only use a specific set of top-
level domains and length values. Later layers additionally learn to
discriminate classes by higher level features such as features based
on ratios.

5 CONCLUSION & FUTURE WORK

In this paper, we present the design and preliminary results for a vi-
sual analytics system that allows designers of deep learning models
for multi-class DGA classification to explore patterns their models
find in the data. We provide a novel approach to tackle current
research questions in the field of XAl for algorithmically generated
data with hard-to-interpret semantics from the context of cybersecu-
rity. The user can analyze the progression of a customized subset
of the data set throughout the different layers of a deep learning
model. We employ clustering to find patterns in the activations of
the model’s nodes and present them to the user with a decision tree
to interpret these clusters.

A limitation of our approach concerns the meaning one may
attribute to the clustering result. Although our results offer an indi-
cation that the clustering works well for this application, it requires
more thorough evaluation. This issue may be aggravated by the fact
that we only operate on a subset of the data set. Especially when
the number of classes in the selection is large, the clustering results
can vary, which in turn can lead to misinterpretation of the provided
result. In addition, there is no clear connection between the provided
explanations of the decision tree and the model’s classification, i.
e. the decision tree provides a possible explanation for the clusters
which does not necessarily have to reflect how the model separates
this data, especially when there are many possible explanations with
equal merit.

For future research, we would like to perform an in-depth user
study to evaluate the usability and utility of our developed system.
Furthermore, we want to use those results to extend our system such
that other users could benefit from it, e. g. that security analysts may
consult it for the investigation of malicious domains. In addition,
we want to explore how interactive manipulation of the data or
features used to build the decision tree could be incorporated. Such
functionalities could be used to test how robust the model is to
adversarial examples and where more sophisticated features have
been learned by the model.

Finally, we see potential in investigating whether our visualiza-
tion system can be extended to test features to facilitate feature
selection for the development of models with better intrinsic inter-
pretabiliy. Such a strategy could help to bridge the gap between high-
performance black-box models and hard-to-develop interpretable
models.
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