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Abstract—DNS over HTTPS (DoH) has been created with
ambitions to improve the privacy of users on the internet. Domain
names that are being resolved by DoH are transferred via an
encrypted channel, ensures nobody should be able to read the
content. However, even though the communication is encrypted,
we show that it still leaks some private information, which can be
misused. Therefore, this paper studies the behavior of the DoH
protocol implementation in Firefox and Chrome web-browsers,
and the level of detail that can be revealed by observing and
analyzing packet-level information. The aim of this paper is to
evaluate and highlight discovered privacy weaknesses hidden in
DoH. By the trained machine learning classifier, it is possible to
infer individual domain names only from the captured encrypted
DoH connection. The resulting trained classifier can infer domain
name from encrypted DNS traffic with surprisingly high accuracy
up to 90 % on HTTP 1.1, and up to 70 % on HTTP 2 protocol.

Index Terms—DNS over HTTPS, DoH, DNS, Fingerprinting,
Privacy, Classification, Machine Learning, Datasets

I. INTRODUCTION

The development of modern technologies and protocols
starts to pay more attention to the privacy of users. Currently
used protocols are continually evolving to novel versions that
help to avoid information leakage, and also some bright new
protocols focused on security and privacy by design. The
motivation is clear. Lack of privacy represents a severe threat
for a user that may lead to information gathering by potential
enemies, user profiling based on the content of activities,
possible extortion.

According to findings presented in the 2018 Internet Or-
ganised Crime Threat Assessment report [1], the attacks are
becoming tailored to target small businesses or larger targets.
The reason is simple – targeted attacks are more lucrative.
However, these types of attacks are more challenging to deploy
because it requires information about the victims, their users,
or employees.

Spear phishing is an example of a critical security threat that
requires information about the user’s activity. Let us imagine
that an attacker can observe the web traffic of a user. In case
an attacker gains information about visited websites and the
date of access, it is much easier to plan a well-targeted social
engineering attack (e.g., tailored phishing e-mail) that looks
trustful. Luckily, HTTP connections are currently encrypted by
TLS mechanisms, so the attacker can observe only encrypted
data. However, many published research papers related to

website fingerprinting present the feasibility of such estimation
even on the encrypted traffic.

Fingerprinting and activity tracking was even easier in
the past due to unencrypted DNS [2], [3] mechanism to
translate domain names of the websites. In practice, every web
page access produces several domain queries. Security and
privacy engineers proposed an enhanced mechanism of such
translation that uses standard HTTPS — DNS over HTTPS
(DoH) [4]. Therefore, this traffic is assumed to be resistant to
eavesdropping. This paper provides an experimental evaluation
of encrypted DoH from the privacy perspective that shows that
DoH is still not a perfect solution in some cases.

The main goal of this paper is to highlight potential privacy
weaknesses hidden in DoH, that can be exploited to disclose
users’ information. The greatest danger of privacy-based so-
lutions is the users’ illusion of invulnerability and potential
change in his usual behavior.

We focused on behavior patterns at the network packet
level. Usually, this packet level is totally out of users’ control
(assuming that only a web-browser is used without VPN etc.).
On the other hand, it is a natural expectation that modern
web-browsers should handle this scope of privacy themselves.
However, our results show that some of them do not handle it
sufficiently. Based on the thorough analysis of packet traces,
we propose a feature vector to fingerprint encrypted DoH
responses and recognize domain names by machine learning
models. The accuracy of the DoH response fingerprinting is
studied across different HTTP protocol versions and multiple
browsers. Last but not least, we summarize possible defenses
and even propose new one.

II. RELATED WORK

DoH is a novel technology, which is starting to be massively
supported by industry leaders. Currently, all most popular web-
browsers, such as Firefox, Chrome, and Edge, already support
DoH (the list of web-browsers that currently support DoH can
be found in ZDNET article [5]). Microsoft also published
an announcement [6] about DoH support in the Windows
operating system for testing. Therefore, it is highly expected
that the use of DoH will increase rapidly in the near future.
Hence we believe, with the increasing insemination of this
technology, the privacy aspects must become an essential focus
of the current research. The privacy benefits and also pitfalls
of DoH, in general, are mentioned in [7].978-1-7281-8416-6/20/$31.00 ©2020 IEEE



Borgolte et al. [8] provides general discussion about DoH
and several areas such as performance, security, and privacy.
However, the paper does not analyze the encrypted communi-
cation of DoH at the network level.

It is worth noting that our scope of interest for this paper
is to examine various DoH clients, i.e., web-browsers, even
though DoH providers can also be a significant privacy risk.
However, our observations show that known and popular DoH
providers support the modern enhancements of protocols, so
it is mainly the client’s responsibility that a secure connection
is in use.

There has been a general skepticism that encryption of DNS
alone is sufficient for preserving users’ privacy (for example,
[9], [10]). Therefore, the engineering community developed
a DNS protocol privacy enhancement feature called EDNS
padding [11]. Supporting clients sends DNS requests padded
with random content to equalize the sizes of all packets, which
reduces the possibility of side-channel information leakage.

According to our knowledge, the EDNS padding feature
is currently supported in majority of web-browsers. However,
Mozzila Firefox still does not support this feature. During the
time of writing this paper, there is a one-year-old request1

in the Mozilla bug report platform for implementing EDNS
padding but, the support is still not confirmed.

The lack of encrypted DNS padding was already exploited
in [12], [13]. Both papers study identification of encrypted
traffic on Alexa’s top websites list2. As a component of their
feature vector, the authors use sequences of message bursts
and gaps, and they were able to fingerprint webpages based on
DoH traffic with very high accuracy. Additionally, both papers
also studied traffic with EDNS padding feature enabled, and
they were successful with more than 70 % accuracy.

The inconsistency of DNS padding usage was also men-
tioned by Vekshin et al. [14]. They trained ML-Based model
capable of DoH recognition and even DoH client classification.
They stated that padding usage is an essential feature for the
client classification problem.

The unpadded website fingerprinting was also studied by
Chen et al. [15]. The authors analyzed and fingerprinted all
pages in web application. By observing only packet sizes, they
were able to determine users’ actions in an incredible amount
of detail, such as the content of input forms.

Some website fingerprinting approaches also deals with
padded communication. For instance, Hayes et al. [16] pro-
poses a k-fingerprinting method that can be used to recognize
the visited website even in the case where the packets are
padded by Tor browser.

Our paper is very close to the topic of fingerprinting;
however, we aim at the recognition of independent domain
names just according to DoH communication. This is the main
difference of other papers related to fingerprinting, which is
targeted on recognition of, e.g., the whole web site.

1https://bugzilla.mozilla.org/show bug.cgi?id=1543811
2https://s3.amazonaws.com/alexa-static/top-1m.csv.zip

Paper [17] is the only study that mentions the inferring of
DoH content. However, they do not present any classification
results and rather introduce a new challenge.

To our best knowledge, we are not aware of any published
paper, which presents a packet-level based DoH response
fingerprinting method and evaluates its accuracy.

III. DATASETS

A proper dataset is an essential prerequisite for an excellent
ML model. The quality of the model is directly linked with
the heterogeneity of information contained in the dataset.
However, to the best of our knowledge, there are no pub-
licly available annotated datasets targeted for fingerprinting of
domains in DoH. Therefore, we created our own and made it
publicly available on the Zenodo platform [18].

DoH is currently supported in almost all commonly used
web-browsers [5]. However, in the dataset creation and further
analysis, we decided to use just Mozilla Firefox and Google
Chrome browser since they are used by the majority of
users [19]. Unfortunately, another mostly used browser —
Safari — does not support DoH at all. We also evaluated
several Chrome-based browsers such as Microsoft Edge and
Opera and did not spot any difference in DoH connection from
Chrome. Therefore, Firefox and Chrome are the two main
representatives of DoH implementations in web-browsers.

Additionally, we evaluated the traffic from multiple DNS
providers (Google, Cloudflare, and NextDNS). However, we
did not observe any statistically significant differences. There-
fore, the further text explains our experiments and analysis
using only one resolver — Cloudflare (which is the default
for multiple browsers) — for the sake of simplicity of the
description.

To create the DoH communication datasets, we used several
virtual machines with Windows and GNU/Linux operating
systems. A simplified scheme is shown in Fig. 1. We cap-
tured the traffic from the DoH enabled web-browsers using
tcpdump [20]. To automate the process of traffic generation,
we installed Google Chrome and Mozilla Firefox into sepa-
rate virtual machines and controlled them with the Selenium
framework [21] (Tab. I shows detailed information about
used browsers and environments). Selenium simulates a user’s
browsing according to the predefined script and a list of
domain names (i.e., URLs from Alexa’s top websites list
in our case). The selenium was configured to visit pages in
random order multiple times. For capturing the traffic, we used
the default settings of each browser. We did not disable the
DNS cache of the browser, and the random order of visiting
webpages secures that the dataset contains traces influenced
by DNS caching mechanisms.

Each virtual machine was configured to export TLS cryp-
tographic keys, that was used for decrypting the traffic using
WireShark application. Python scripts consequently processed
the decrypted PCAPs and extracted the feature vectors for the
datasets. The encrypted content of DoH responses was used
only as a ground truth for labels at the end of the dataset
preparation process.
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Fig. 1. Scheme of capturing datasets using Selenium, several virtual machines
with web-browsers, and tcpdump. The web-browsers were forced to dump
cypher keys, so the captured PCAP files can be decrypted.

TABLE I
VERSIONS OF BROWSERS AND OS USED FOR DATASET GENERATION.

Browser Name Browser Version OS

Mozilla Firefox 74 Fedora 31
77.1 Windows 10

Google Chrome 83.0.4103.97 Windows 10

We captured multiple datasets with different amount of
visited pages to evaluate the accuracy of the classifier with
varying quantities of labels. We also used both common ver-
sions of HTTP. Detailed information about captured datasets is
shown in the Tab. II. Each dataset is composed of testing and
training parts of the approximately same size. The capturing
of training and testing part was made during different days for
even more realistic results.

Unfortunately, we were not able to enforce the Windows
version of Firefox to use with HTTP 1.1 only. After disabling
the HTTP 2 in the settings, the browser established the TLS
connection to DoH resolver, but it used traditional unencrypted
DNS, and the DoH connection remained silent. We submitted
a question to the Firefox support forum, but we have received
no response until the paper submission. We also could not
capture the traffic of the Linux version of Chrome, because
the DoH is currently supported in Windows version only.

TABLE II
OVERALL INFORMATION ABOUT CREATED DATASET CONTAINING THE

NUMBER OF DOH IP FLOWS AND THE TOTAL NUMBER OF IP FLOWS. THE
ABBREVIATIONS IN COLUMNS LABEL STAND FOR: OS – OPERATING

SYSTEM, DOH RESP. – TOTAL NUMBER OF DOH RESPONSES INCLUDED IN
THE DATASET, B – BROWSER (F – FIREFOX, C – CHROME), HV – HTTP
VERSION, UP – UNIQUE WEBPAGES, TV – TOTAL VISITED WEBPAGES,

UD – UNIQUE DOMAINS (NUMBER OF LABELS)

Dataset Name OS B HV UP DoH rsp TV UD
Lin-Fir-H2-30 Lin F 2 30 162,078 1,200 409
Lin-Fir-H2-50 Lin F 2 50 230,025 2,000 455
Lin-Fir-H2-70 Lin F 2 70 356,311 2,800 627
Win-Fir-H2-50 Win F 2 50 147,839 2,000 445
Win-Chr-H2-50 Win C 2 50 37,125 2,000 389
Lin-Fir-H1-30 Lin F 1 30 110,949 1,200 308
Lin-Fir-H1-50 Lin F 1 50 186,070 2,000 421
Lin-Fir-H1-70 Lin F 1 70 272,470 2,800 572
Win-Chr-H1-50 Win C 1 50 22,787 2,000 382

IV. DOH COMMUNICATION ANALYSIS

The essential part of DoH fingerprinting is a deep un-
derstanding of the traffic. Therefore, we manually analyzed
decrypted raw PCAP data with the DoH communication,
which we captured for our datasets.

Since DoH is quite a new protocol, there are still two co-
existing significantly different implementations. The RFC [4]
compliant definition uses classic DNS Wireformat [3] en-
capsulated in the HTTPS protocol using the GET, or POST
methods. The other approach introduced by Google uses JSON
based messages transferred via HTTPS GET. The majority of
the DNS providers support both implementations. However,
all the DoH enabled browsers, including the Chrome-based
ones, and most of the other DoH clients are currently using
RFC compliant Wireformat messages with the HTTPS POST
method.

A. Traffic shape of DoH

The DoH traffic follows the HTTP request-response scheme,
with the expected differences across browsers, e.g., in HTTP
headers. On the other hand, we did not observe any differences
between the Linux and Windows versions of Firefox. The
most significant difference was in the use of EDNS padding
by Google Chrome. All requests and responses coming from
Chrome had the same size.

B. DNS over HTTP 2

The DNS over HTTP 2 communication pattern is shown
in Fig. 2. The browser sends multiple DNS requests when
loading the page. However, the resolver does not maintain the
sequence order of queries and sends responses in an arbitrary
order. This behavior makes the association of particular re-
quests with corresponding encrypted responses impossible.

Another DNS over HTTP 2 characteristics originate from
the stream management. Each request creates a new stream,
which is then closed by the response. The queries and also the
responses are split into exactly two datagrams. The first packet
is always larger, with at least 100 bytes (total length in the IP
header field). The second packet contains only HTTP2 stream
control information such as End of stream flag and therefore
has a fixed size of 71 bytes.

However, there are some exceptions. The Lin-Fir-H2-30
dataset contains 162,078 responses in total, only 78 of them
were received as a single packet. Those larger packets contain
multiple HTTPS streams (DoH data stream & control streams),
which effectively obfuscates the size od DoH communication
and precludes fingerprinting. However, the number of such
anomalous responses is negligible.

HTTP 2 header regarding the header compression
(HPACK [22]) was also identified as an important
characteristic affecting the fingerprinting. The header
fields with nonpersistent content across all packets (such as
timestamps) result in the different compressed header sizes.
Thus packets with the same data inside the data stream
might have different sizes. The data size inconsistency in



HTTP 2 is the most significant complication for DNS traffic
fingerprinting, except for the EDNS padding.

HTTP1.1
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Fig. 2. DoH Communication pattern difference between HTTP 2 and
HTTP 1.1. The abbreviations in legends stand for: H1 – HTTP 1.1, H2 –
HTTP 2

C. DNS over HTTP 1.1

The HTTP 1.1 is not officially recommended by [4] due to
performance reasons. The biggest performance bottleneck is
that HTTP 1.1 does not support multiple concurrent requests
in a single connection; therefore, it always has to wait for
the response before sending the next query. According to our
observations, the browsers reduce performance difficulties by
creating multiple parallel connections (usually 2). By switch-
ing between connections, they are able to perform concurrent
requests.

Performing DoH response fingerprinting is more feasible in
case of HTTP 1.1. By observing a single TCP connection, we
are able to pair each request with an appropriate response.
Also, the DNS requests and responses are always placed in
individual packets. The figure Fig. 3 depicts a histogram of
DoH response sizes in our dataset. We can notice that the
packet sizes of Chrome DoH are larger due to the applied
EDNS padding. The padding effect is more noticeable in
HTTP 1.1, where we observed only two packet sizes.

The differences among the analyzed DoH communication
is clearly summarized in Tab. III.

V. OUR APPROACH

This paper studies the possibility to retrieve details from the
DoH connection. Previously published related works showed
us a possibility of inferring the visited websites based on the
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Fig. 3. The histogram of DoH packet sizes

TABLE III
SUMMARY OF OBSERVED DIFFERENCES ACROSS ANALYZED BROWSERS’

DOH COMMUNICATION., THE ABBREVIATIONS IN COLUMNS LABEL
STAND FOR: F – FIREFOX, C – CHROME

HTTP 2 HTTP 1.1
Browsers: F C F C
padding (EDNS) no yes no yes
split packets yes yes no no
average packet size lower lower higher higher
Multiple parallel conn. no no yes yes
order of responses arbitrary arbitrary ordered ordered
prefered DoH format RFC RFC RFC RFC
pairable req. & resp. no no yes yes

DoH traffic fingerprinting; However, we study whether it is
possible to infer individual DNS queries and gain even more
comprehensive insight into the traffic.

During our first experiments, we observed a considerable
number of DNS queries targeting and obviously generated
subdomain name3 or subdomain name with number of partic-
ular server4. Those domains were often misclassified because
of their similarity. We also noticed a similar problem with
domains that differs only in top-level domain5. Therefore we
reduced the problem only on inferring the second-level domain
(a domain name before the top-level domain), as they provide
us with most of the important information.

A. Recognition of DoH Requests&Responses in Encrypted
Traffic

The essential prerequisite for inferring the encrypted domain
names is the identification of DoH itself. Assuming, that the
attacker can intercept the communication, the DoH connection
from a web-browser can be recognized by a particular IP
address of DoH resolver, or by trained machine learning
classifier [14].

The shuffled order of DNS over HTTP 2 responses prevents
from pairing DNS requests with a corresponding response
(see Sec. IV). After further analysis, we decided to use only
responses even with HTTP 1.1, where the pairing is possible.
The DNS queries are often smaller and have very similar size,
as it is shown in the Fig. 4; Thus, the query size in feature
vector confused the classifier resulting in worse results.

3such as i7gjqlci(...)0836525.nuid.imrworldwide.com
4such as i0.sinaimg.cn and i1.sinaimg.cn
5such as google.com and google.fr
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Fig. 4. The histogram of DoH packet sizes on Firefox Linux version with
HTTPS 1.1.

The request-response shape of the DoH traffic is easily
recognizible. Anybody, who observes the DoH, can straight-
forwardly recognize the DoH responses even though they are
sent through the encrypted channel with the EDNS padding
feature. In the case of HTTP 1.1, the attacker can distinguish
the responses by filtering the communication coming from
the DoH and stripping out the initial TLS handshake. The
response detection in HTTP 2 is a bit more complicated,
because it also contains control stream packets [23], which
might be mistakenly considered as DoH responses. However,
the number of control stream packets is negligible (around
1 %). Also, every response is always followed by the “end
of stream” packet with precisely 71 bytes (Sec. IV), which
reduces the falsely classified responses even more.

B. Feature engineering

The website fingerprinting focused papers use a large
number of features obtained from the traffic. However, the
field of DNS content fingerprinting is entirely different. The
DoH traffic is one long TCP connection, with requests and
responses. Thus the only feature we can extract from the
communication is the length of the individual packets, their
timestamps, and direction.

Similarly to the website fingerprinting, the size of trans-
mitted packets would play an essential role in our feature
vector. However, only the packet size feature is insufficient
for DNS query fingerprinting because of the large number of
collisions and packet size variation. The only other feature we
can directly extract from the network is timing characteristics.

The browsers usually send batches of DNS queries in a short
time period during the website loading. After the main HTML
content is loaded, it usually asks for multiple sources, such
as CDN, advertising server, or JavaScript libraries. For each
website load, we can observe multiple DNS bursts, because
each loaded asset might have other dependencies. Our analysis
revealed that even though the order of responses is shuffled,
the unordered set of packet sizes remains almost unchanged
in one web page load. These observations are consistent with
the previous website fingerprinting approaches based on DNS
presented in [12], [13]. The batches of DNS queries and
responses are observable at the traffic level as bursts of packets
in both directions.

1s

0.5 s> 1s > 1s

Fig. 5. Neighborhoods of a DoH response. The black dot represents the
fingerprinted DoH response. Red packets belongs to Close neighborhood,
yellow and red packets belong to Medium neighborhood and the green, yellow
and red packets belong to Webpage neighborhood.

TABLE IV
CALCULATED MUTUAL INFORMATION VALUE (MI) FOR EACH

EXTRACTED FEATURE. THE FEATURES WITH MI HIGHLIGHTED BY GRAY
BACKGROUND WERE INCLUDED IN OUR FEATURE VECTOR. THE
ABBREVIATIONS IN COLUMNS LABEL STAND FOR: CN – CLOSE

NEIGHBORHOOD, MN – MEDIUM NEIGHBORHOOD AND WN – WEBPAGE
NEIGHBORHOOD

Feature name Mutual Information value
Packet Size 2.085

CN MN WN
Mean Size 0.866 0.848 0.892
Median size 1.133 1.097 1.053
Var. of Sizes 1.276 1.297 1.841
Num. packets in Neigh. 0.751 0.824 1.429
Max size in Neigh 1.390 1.374 1.330
Min size in Neigh 1.376 1.268 1.015
Num. of larger packets in Neigh. 0.413 0.448 0.606
Num. of smaller packet in Neigh. 0.468 0.509 0.639

For each DoH response, we consider three neighborhoods
— Close, Medium, and Webpage. The Close neighborhood
includes only the responses that belong to a single burst
of communication. The Webpage neighborhood includes all
responses that are related to the whole page load. The Medium
neighborhood was added to the feature vector as a trade of
between a burst and webpage. The sizes of each neighborhood
were determined experimentally and are depicted in Fig. 5.
Assuming the fingerprinted packet is in the middle of the
interval. The Close neighborhood includes all packets within
the half-second interval, the Medium part includes all packets
within the second interval, and the Webpage neighborhood
includes all packets, that are bounded at least one-second-long
communication gap with zero responses.

Together from all three time intervals, we extract 29 features
based on packet sizes. After calculating the feature score with
Mutual Information, we reduced the feature list to the final
11. All identified features are clearly outlined in Tab. IV.

C. Algorithm selection

We experimented with multiple supervised learning algo-
rithms and evaluated their precision. The models such as C4.5
decision tree [24] or K-Nearest Neighbours [25] performed
poorly; thus, we decided to focus on ensemble algorithms.

At first, we experimented with various stacked [26] model
architectures, especially the state-of-the-art k-fingerprinting
approach based architecture. However, in our initial testing, the
k-fingerprinting [16] based ensemble performed with around
40 % precision. We achieved the best results using the combi-



TABLE V
EXPERIMENTALLY SELECTED VALUES OF MODEL HYPERPARAMETERS.

Algorithm Hyperparameter name Value

C4.5 Desicision tree Max Depth 30
Min. number of samples in leaf node 1

Adaboost Number of estimators 3

Bagging
Max. ratio of features 0.4

Max. ratio of data 0.4
Number of estimators 55

nation of the AdaBoosted decision tree [27] and the Bagging
meta-learning algorithm [28].

The AdaBoost ML algorithm is sequentially learning multi-
ple decision trees, one tree in each iteration. Each consecutive
iteration attempts to correct the errors from the models trained
in the previous iteration.

The Bagging meta-learning algorithm then trains multiple
AdaBoosted decision trees, each on a subset of training data
and subset of features. The Bagging approach is designed to
reduce variance in classification accuracy and train a robust
and stable model. The training on feature and data subsets
also effectively prevents the dataset overfitting.

The Hyperparameters of our classifier was set experimen-
tally and the most important of them are written in the Tab. V

D. Classification Output

To make the classification more reliable, we used a multi-
label output approach. The output of our classification algo-
rithm might be multiple most probable domains (output label
vector). We also added an extra label – None – for difficult
cases, where the classifier is uncertain.

When the confidence of the classifier is larger than the
probability threshold value, the domain is added into the output
label vector. Our aim was to keep the length of the output
label vector under two possible resulting domains. After the
experimental evaluation with multiple datasets, we found a
threshold value of 10 %, which results in an average output
vector length of 1.6 – 1.7 domains.

VI. RESULTS

This section evaluates the possibility of DoH response
fingerprinting based on the described feature vector. We
measured the performance of the classifier according to its
accuracy and the number of unassigned labels (i.e., None
label). We trained the classifier on the training part of each
dataset, and then we performed the classification in the test
parts. The results of the classifier were divided into three
groups. None – The classifier was not able to assign any label.
True – One of the domains contained in the output label vector
was indeed queried. False – The classifier did not recognize
the queried domain correctly and assigned a wrong label. The
accuracy is then calculated only from the class with assigned
labels.

A. DNS Content Fingerprinting Accuracy with HTTP 2
Datasets

The detailed results of the classifier used with HTTP 2 are
written in the Tab. VI. We can notice that the accuracy of our
classifier on the Firefox traffic varies around 70 %, which is
surprisingly high. As it can be seen, the classifier does not
perform significantly worse with a larger number of unique
webpages. The 70 % accuracy and only 10 % of unclassified
responses might suggest, that the unpadded DoH is a serious
privacy threat for Firefox users. Compared to the performance
of Google Chrome, where the classifier performs poorly.

TABLE VI
THE PRECISION OF TRAINED CLASSIFIER WITH HTTP 2 DATASETS. THE
VALUES IN BRACKETS SHOW THE RATIO OF CLASS IN THE TEST PART OF

THE DATASET. THE ABBREVIATIONS IN COLUMNS LABEL STAND FOR: AL
– AVERAGE LENGTH, ACC. – ACCURACY

Dataset name None True False AL Acc.
Lin-Fir-H2-30 9.5 % 64.5 % 26 % 1.7 71.33 %
Lin-Fir-H2-50 14.2 % 56.7 % 29.1 % 1.6 66.16 %
Lin-Fir-H2-70 10.1 % 62.5 % 27.4 % 1.6 69,52 %
Win-Chr-H2-50 28.8 % 12.2 % 58.9 % 1.7 17.23 %
Win-Fir-H2-50 11.7 % 64.8 % 23.4 % 1.7 73.46 %

B. Classifier Precision with HTTP 1.1

According to our evaluation, the DoH connections without
padding that use HTTP 1.1 are even worse for the users’ pri-
vacy. In Tab. VII, we can see that the accuracy of our classifier
is around 90 %, which is higher than in the previous case.
Additionally, the amount of None labels is almost negligible.
Contrary to the HTTP 2 cases, we observe a slightly decreasing
inaccuracy with higher number of web pages. However, this
decrease is not linear, so it would not be substantial with larger
datasets.

C. Open-world evaluation

In the previous experiments, we knew which domain names
were resolved by the user, and these domains were also
included in our datasets (this way of experiment is usually
referred as a closed-world environment). However, as we know
from the website fingerprinting area, the classifier is also
usually tested with “unknown” webpages that were not seen
during the testing phase as well. This open-world evaluation
approach is more realistic because in practice, it is expected
that a possible attacker has observed only a limited number of
websites. Inspired by the website fingerprinting, we applied

TABLE VII
DNS CONTENT FINGERPRINTING ACCURACY WITH HTTP 1.1 DATASETS.
THE VALUES IN BRACKETS SHOW THE RATIO OF CLASS IN THE TEST PART
OF THE DATASET. THE ABBREVIATIONS IN COLUMNS LABEL STAND FOR:

AL – AVERAGE LENGTH, ACC. – ACCURACY

Dataset name None True False AL Acc.
Lin-Fir-H1-30 1 % 89.2 % 9.8 % 1.7 % 90.14 %
Lin-Fir-H1-50 3 % 85 % 12 % 1.7 % 87.5 %
Lin-Fir-H1-70 4.3 % 82.7 % 13 % 1.6 % 86.34 %
Win-Chr-H1-50 56.8 % 4.6 % 38.6 % 1.6 % 10.73 %



TABLE VIII
FIVE MOST AND LEAST SUCCESSFULLY CLASSIFIED DOMAINS. THE RATIO

IS CALCULATED AS size(True)/size(False)

Best Worst
Name Ratio Name Ratio

1 imrworldwide 189.0 bdstatic 0.016
2 smartadserver 35.6 lxsvc 0.030
3 pubmatic 25.4 scimedia 0.045
4 mozilla 20.7 zgjx 0.045
5 netflix 15.6 bdydns 0.051

this open-world evaluation approach on the DoH responses
fingerprinting, where the classifier must recognize uknown
domain names.

We simulated the open-world environment by training our
classifier with the Lin-Fir-H2-30 dataset, and then we evalu-
ated it by the Lin-Fir-H2-70. The precision strongly depends
on the probability threshold value, and we achieved 50 %
accuracy with a threshold value set to 20 %. However, the
None label was assigned to 80 % of answers. Therefore,
the classifier determines the correct label only in 10 % of
DoH responses. The similar results were achieved also with
HTTP 1.1 datasets. The poor performance in the open-world
environment can be improved by combining the classifier with
website fingerprinting methods to recognize known webpages
that are included in the training dataset. Naturally, increasing
the size of the training set of the “known” domain names also
works well to improve the accuracy for a potential attacker.

D. Discussion of Evaluation

Our classifier performed with a very high accuracy in
the closed-world environment using the DoH traffic without
enhanced privacy protection. The accuracy, especially for
HTTP 1.1 connections, is surprisingly high and proves the
importance of fingerprinting defenses such as EDNS padding.

However, the classifier has also some weak points. We
observed that the accuracy of the classification of the DoH
responses depends on the referring web page, which creates a
context of the DoH communication. Tab. VIII contains the list
of domain names with the highest, resp. lowest classification
accuracy, and the True/False ratio. The results show that the
classifier accuracy is not uniform for all domain names, i.e.,
some domain names are much easier recognized than others.

The second weak point is the performance in an open-
world environment, which reduces the possibility of attack
deployment. Therefore, an attacker must create large training
dataset with as many domain names as possible to prepare
an efficient classifier. However, the results show the attack
works and the performance can be improved with some
additional information, e.g., results of some existing website
fingerprinting approaches, or knowledge about destination IP
addresses. Our main finding is the possibility to retrieve an
incredible level of detail (particular domain names) from the
encrypted DoH connections without padding.

VII. DEFENSE AGAINST DOH RESPONSE
FINGERPRINTING

The biggest weakness of DoH is the observable request-
response pattern. According to our evaluation (in Sec. VI),
the content padding is an efficient defense against response
fingerprinting.

However, the padding also has several disadvantages. The
attacker can easily observe the number of resolved domains
and timing characteristics, even in EDNS padding enabled
connections. This is a dangerous amount of information that
can be misused. Moreover, according to to [13], the padding
does not completely prevent website fingerprinting using DoH
traffic. Last but not least, the padding also requires additional
communication resources, so it necessarily reduces the avail-
able network throughput and affects performance.

The other possible defense is sending a confusion query
to unrelated domains during webpage load, which is similar
to camouflage website defense presented in [29] for website
fingerprinting. The goal is to mix multiple unrelated traffic
and make any DNS based fingerprinting impossible. The
browser can issue a resolve request for the random domain or
periodically update DNS cache for popular websites. Therefore
the confusion packets might be useful and by preloading even
speed up the user experience. However, by using this approach,
we can still observe the request-response scheme and infer a
number of queries and responses.

The visibility into DoH traffic can be reduced even more by
supporting multiple queries and multiple responses inside one
packet. According to our observation, browsers usually send a
large number of queries simultaneously. This behavior creates
bursts of messages. For example, 98.67 % of DoH responses
were sent within a burst (i.e., their Close neighborhood was
not empty) in the Lin-Fir-H2-30 dataset. The responses (as
well as requests) within the same burst might be merged into
a joint HTTP message. This approach would hide the number
of resolved domain names, and it would certainly prevent DoH
response fingerprinting.

Multiple DNS queries inside a single HTTP message are
not currently supported by DoH specification [4]. However,
the same effect can also be reached in HTTP 2, by a proper
handling of data streams and sending multiple of them in one
TLS record.

The multi-DNS message approach can be combined with
data padding, and confusion query approach, which even
more strengthens the defense against the fingerprinting with
a lower impact on the network throughput (the amount of
useful transmitted data would be larger). Last but not least,
merged DNS queries would disrupt the feasibility of website
fingerprinting methods based on observing DoH traffic.

VIII. CONCLUSION

DNS over HTTPS (DoH) is a natural reaction of the
engineering community related to IETF to deal with privacy
issues of the currently used DNS protocol. The main principle
of DoH is to encapsulate standard DNS queries and answers
into encrypted communication of HTTPS. It is clear that the



encryption hides the content of the users’ queries. Relying
on the encryption mechanism, users expect that their resolved
domain names remain private from network operators and
potential attackers who would like to track users’ activities.

To challenge this expectation of the increased level of
privacy using DoH, we have focused on a comprehensive
analysis of DoH traffic at the packet level. The aim was to
check the possibility to reveal more in-depth information about
resolved domain names by an attacker.

The research task required creating specific DoH traffic
datasets, that would contain packet-level information and
annotation with ground truth labels. The created datasets of
traffic generated by Firefox and Chrome web-browsers in
GNU/Linux and Microsoft Windows environments were used
for evaluation and made publicly available to the research
community.

Surprisingly, our experiments show that it is possible to
recognize particular domain names even though DoH uses a
TLS connection. According to our results, the best accuracy of
our classifier was in the traffic of DoH that uses old HTTP 1.1
without EDNS padding extension. That means that this case
is the worst option for users’ privacy because the accuracy
of the classifier reached about 90 %. The currently existing
HTTP 2 performed much better and protected the privacy more
efficiently. However, the classifier was able to reach about
70 %, which is still incredibly high. Our results prove the
necessity of using defense techniques against fingerprinting
such as EDNS padding, which reduces the classifier accuracy
to 17.23 % (HTTP 2), and 10.73 % (HTTP 1.1).

Naturally, the highest accuracy was achieved in the so-
called closed-world setup of the experiment, which means
classifiers could learn all domain names from the training
dataset. However, we evaluated the open-world environment
experiment, as well. Accuracy of the classifier was lower as
expected; however, the more domain names an attacker has
in the training dataset, the better accuracy the classifier can
achieve.

At the end of our evaluation, we proposed some precautions
that can be used as defense mechanisms to ensure better
privacy. It is worth noting that our experiments showed that
it is able to train a classifier based on machine learning
techniques that can reveal the activity of a user even from
the encrypted traffic of DoH. Whereas, the main difference
between our research and other related works is the level of
details. We focused on the identification of particular domain
names contrary to whole websites fingerprinting.
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