
Finding Phish in a Haystack: A Pipeline for Phishing
Classification on Certificate Transparency Logs

Arthur Drichel∗
drichel@itsec.rwth-aachen.de
RWTH Aachen University

Vincent Drury∗
drury@itsec.rwth-aachen.de
RWTH Aachen University

Justus von Brandt
justus.von.brandt@rwth-aachen.de

RWTH Aachen University

Ulrike Meyer
meyer@itsec.rwth-aachen.de
RWTH Aachen University

ABSTRACT
Current popular phishing prevention techniques mainly utilize reac-
tive blocklists, which leave a “window of opportunity” for attackers
during which victims are unprotected. One possible approach to
shorten this window aims to detect phishing attacks earlier, during
website preparation, by monitoring Certificate Transparency (CT)
logs. Previous attempts to work with CT log data for phishing clas-
sification exist, however they lack evaluations on actual CT log data.
In this paper, we present a pipeline that facilitates such evaluations
by addressing a number of problems when working with CT log
data. The pipeline includes dataset creation, training, and past or
live classification of CT logs. Its modular structure makes it possi-
ble to easily exchange classifiers or verification sources to support
ground truth labeling efforts and classifier comparisons. We test
the pipeline on a number of new and existing classifiers, and find
a general potential to improve classifiers for this scenario in the
future. We publish the source code of the pipeline and the used
datasets along with this paper [12], thus making future research in
this direction more accessible.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; • Comput-
ing methodologies → Machine learning.

KEYWORDS
Phishing detection, certificate transparency, machine learning

ACM Reference Format:
Arthur Drichel, Vincent Drury, Justus von Brandt, and Ulrike Meyer. 2021.
Finding Phish in aHaystack: A Pipeline for Phishing Classification on Certifi-
cate Transparency Logs. In The 16th International Conference on Availability,
Reliability and Security (ARES 2021), August 17–20, 2021, Vienna, Austria.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3465481.3470111

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2021, August 17–20, 2021, Vienna, Austria
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9051-4/21/08. . . $15.00
https://doi.org/10.1145/3465481.3470111

1 INTRODUCTION
Despite a long history of research into phishing and its prevention,
phishing attacks still pose a risk to internet users worldwide. They
impact the lives of general users, with more than 100,000 cases
reported to the FBI in 2019 [18], and have been shown to be one of
the most popular first steps in sophisticated attacks against larger
organizations [41].

Existing prevention techniques leave users vulnerable due to
the gap between the start of an attack and its detection and sub-
sequent inclusion of the correspondent URL in blocklists [29]. On
the other hand, attackers are still evolving, changing their methods
and tactics to keep ahead of defense technology. Recently, a vast
majority of phishing websites have started to offer valid HTTPS
certificates to their users [3]. Even though this trend leads to more
legitimate-looking websites, it also opens an opportunity for re-
searchers to detect phishing websites earlier in the process of a
typical attack. This is due to the fact, that when major browsers
check a certificate’s validity, they also require it to be present in
so-called Certificate Transparency (CT) logs [19, 37]. These public
logs therefore offer a view of all certificates that are to be used by
general users, which includes the certificates of phishing websites.
Certificates need to appear in at least two logs to be trusted by
current major browsers [2, 6] and are often submitted directly by
the issuer of a certificate when it is created [23]. Logs are oper-
ated by several entities, including Google, Cloudflare and DigiCert,
and can be monitored by anyone to make sure the log operators
are working as expected. Consequently, by monitoring these CT
logs, it is possible to detect phishing websites while they are still
being prepared by attackers. This early detection can help shorten
the gap between the start of a phishing attack and its inclusion in
commonly used blocklists.

There are, however, several problems with this detection ap-
proach. First, there is a large amount of certificates published in
CT logs (see e.g. [24]), making low numbers of false positives in
potential classifiers a hard requirement. Next, there is no ground
truth available for all certificates in the CT logs, since there is no
complete set of benign or malicious certificates that could be used
to label the logs. This makes it harder to train or test classifiers on
the actual logs, as datasets are likely to be noisy and questions arise
about the validity of performance measurements.

Consequently, prior work looking at the classification of certifi-
cates in CT logs exists, but lacks evaluations on real-world data (see
Section 2). In this paper, we present a modular pipeline that can
be utilized to perform classifier analysis on CT logs. The pipeline

https://doi.org/10.1145/3465481.3470111
https://doi.org/10.1145/3465481.3470111

ARES 2021, August 17–20, 2021, Vienna, Austria Drichel and Drury, et al.

offers functionality from dataset creation, training of classifiers,
up to real-world evaluation with variable verification sources to
provide ground truth labeling. The modular construction makes it
easy to exchange and compare classifiers, or add additional verifi-
cation sources. The pipeline therefore offers a first step towards the
evaluation of certificate classifiers on real CT log data, including
the real-time detection of the certificates of phishing websites.

We use this pipeline in a preliminary comparison of several classi-
fiers, and show that there is still a large potential for improvements,
as none of the classifiers achieve satisfactory true positive rates
while preserving manageable false positive rates. These current
shortcomings could be addressed in the future by removing noise
from the training sets, as well as further improving the ground-
truth labeling of CT log test data, tasks that are facilitated by the
pipeline. Finally, we publish the source code of the pipeline, as well
as our datasets, in order to support more research in this area in the
future [12]. It is our hope, that the public availability of the source
code will make the creation and evaluation of classifiers on CT log
data easier for the research community.

The remainder of this paper is structured as follows: We present
related work in the next section, followed by the description of the
proposed detection pipeline in Section 3. Sections 4 and 5 include
the description of the used classifiers and evaluation results, respec-
tively. Finally, we discuss our results in Section 6 before concluding
the paper.

2 RELATEDWORK
The automatic detection of phishing websites has a long history,
and consequently a large amount of work is available (see e.g. [9]
for an overview).

In general, phishing attacks can be detected during the distribu-
tion of the “bait”, e.g. by detecting phishing emails, or by inspecting
the phishing websites themselves. Different approaches work on
different levels and can be combined, e.g. email detection prevents
a phishing email from reaching the users’ inbox, while website
detection prevents them from entering their information once they
already clicked on a link. The detection of phishing certificates in
CT logs aims at detecting phishing sites even before the “bait” is
sent to the user, offering an additional layer of defense. As certifi-
cates typically contain multiple domain names, and domain names
also form a large part of a URL, the task of phishing URL detec-
tion and certificate detection somewhat overlap. In the following
we therefore first discuss existing approaches for phishing URL
detection and then discuss approaches that make use of certificates.

The classification of URLs is a popular approach to automated
phishing website detection. For example, Zhao et al. [45] present an
approach to train a classifier on only small imbalanced training sets,
still achieving high classification accuracy. In a second example,
Whittaker et al. [42] present a classifier that includes features from
URLs and website content, with the goal of using it to automati-
cally update blocklists. In fact, many of the URL-based solutions
supplement URL features with features from additional sources,
like WHOIS [8] information or website content. The inclusion of
additional features may improve the classification performance and
coverage, but is not always possible for certificates in the CT logs,
as these certificates do not include full URLs.

Some of these classifiers also make use of information from the
certificates of the website. For example, Mohammad et al. [27]
include the usage of HTTPS, as well as information about the
certificate’s issuer in their feature set. The corresponding dataset
has also been made public and been used in several additional
studies.

Compared to the classification of URLs, it is likely that certifi-
cates offer less information. Even though there are several addi-
tional fields in certificates, they are often very similar or identical
for certificates issued by the same issuer [14]. As such, the domain
names embedded in certificates are the most promising factor for
our use-case. However, the domains in certificates include much
less information than a complete URL, as they do not include path
information at all, and sometimes even do not include all subdo-
mains when wildcard certificates are used. Even more problematic
is the case of phishing websites hosted on compromised infras-
tructure, where the certificate was not requested with malicious
intent.

Still, several approaches that focus on certificates only for phish-
ing detection exist. In 2015, Dong et al. [11] proposed a number of
certificate features of phishing websites, including the existence,
length, and relationship of different fields in certificates. They com-
pared a number of classifiers, trained on certificates collected di-
rectly from known phishing and benign websites between late 2012
and 2015, and found that random forest (RF) classifiers achieved
the highest precision. To our knowledge, the first proof of concept
for using CT logs as basis for phishing website classification is
the Phishing Catcher [44], available at a GitHub repository. As for
peer-reviewed research, Scheitle et al. [37] noted in 2018 that the
CT logs might offer a new perspective for phishing detection. In
a preliminary look at the logs utilizing regular expressions, they
find a large number of certificates (more than 125,000) that likely
impersonate a small number of popular services, but do not include
an in-depth analysis. Torroledo et al. [40] train a phishing classifier
on certificates only, aiming to detect differences in the legitimacy of
phishing and non-phishing certificates. Using a highly imbalanced
dataset, they achieve a precision of around 90%, which we were not
able to reproduce or verify in our experiments. Fasllija et al. [15]
train a classifier on domain names extracted from full URLs, arguing
that it would be able to perform classification on CT logs as well.
However, they do not include such an evaluation. Recently, Sakurai
et al. [36] proposed a classifier that is specifically created for the
task of CT log classification. The classifier is based on regular ex-
pressions extracted from known phishing websites, and achieves
promising results on certificates collected from Censys [5]. How-
ever, the static logic based on regular expressions is neither able
to detect new phishing campaigns with unknown domain name
patterns, nor is it suitable for detecting spear-phishing campaigns,
which do not create large amounts of similar domain names in the
first place.

In this paper, we propose a pipeline which makes it possible
to evaluate new and existing classifiers on actual CT log data, in-
cluding the possibility of classifying certificates as soon as they
are added to the logs. For the comparison with previous works, we
choose the Phishing Catcher as well as the classifier by Sakurai et
al., as they work directly on certificates, and we were able to obtain
the source code. In addition, we also present and evaluate a number

Finding Phish in a Haystack ARES 2021, August 17–20, 2021, Vienna, Austria

of feature-based and deep learning classifiers as an alternative to
the existing approaches.

3 DETECTION PIPELINE
In this section, we present our detection pipeline which allows
for comparatively evaluating phishing certificate detection classi-
fiers. Researchers are the main target group for the pipeline. They
profit from an accelerated development process for new detection
methods and from the possibility to assess and compare different
classifiers in a unified setting. However, the pipeline can also be
used right away with already proposed detection methods to iden-
tify phishing websites even before they are activated. The pipeline
is able to perform retrospective analysis in addition to live classifi-
cation of certificates published in the CT logs. All complex tasks,
beginning from data acquisition (collecting certificates from CT
logs as well as by crawling from well-known phishing websites),
over data pre-processing (filtering and sanitizing), data labeling
(as benign or phishing), classifier training, the classification itself,
evaluating the classifiers’ performance, up to the preparation of the
final results are covered by our approach.

In the following, we first specify our design goals and thereafter
provide an overview of our modular pipeline. The source code is
written in Python and publicly available.

3.1 Design Goals
During the development of our pipeline we defined several design
goals (DG) which aim to assure the convenient usability as well as
the benefit of our approach.

DG1) Handle Data Processing. In order to train and assess the per-
formance of a classifier and to analyze the outcome of an evaluation,
our pipeline has to cope with different types of data obtained from
various data sources. These sources provide data in various formats
and must therefore be normalized before aggregation. In addition,
the aggregated data may contain duplicates as well as mislabeled
samples that need to be filtered out before use. Our first design
goal therefore ensures that there is a means of data processing
which enables the appropriate generation of training data and the
evaluation of trained classifiers. In addition, due to the targeted
live detection of phishing certificates, it is mandatory to provide a
means for result validation since ground truth information cannot
easily be acquired.

DG2) Setup for Comparative Evaluations. Comparison of new ap-
proaches to established classifiers is an important part of the re-
search process. As such, our second design goal is to ensure easy
reusability by other researchers, such that our pipeline can be used
for the comparative analysis of phishing certificate detection clas-
sifiers. Thereby, we contribute to the research community by en-
abling the assessment of newly developed or improved classifiers
in a unified setting.

DG3) Speed & Scalability. As our pipeline has to process a large
amount of certificates published in the CT logs, our third design
goal is to ensure the possibility for real-time classification. Further,
our approach shall enable an efficient retrospective analysis of large
amount of data.

Database Module

 Benign
Certificates

 Malicious
Certificates

PhishTank

Training Module

Feature Extraction

Training

Feature Vectors

Model

Classification Module

LabelsClassification

Intelligence Module

Results

Result Views

Phishing URL
 Database

 Google Safe
Browsing Prefixes

Filter Malicious
 Certificates

 Malicious
Domains List

Tranco & Alexa
 Top Domains

 Benign
Domains List

Filter Benign
Certificates

PhishStats OpenPhish

Post-processing

Screenshot
Phishing URL
 Database

 Google Safe
 Browsing

VirusTotal

Verification

Xenon2020 Xenon2021
.........

Xenon2020 Xenon2021
...

Figure 1: Abstract illustration of the architecture and pipeline
operation.

DG4) Modularity & Extendability. Since research in this field is ad-
vancing rapidly, the fourth design goal is to ensure that already
developed parts of the pipeline can easily be exchanged. For in-
stance, this is particularly important when new detection methods
are proposed. Instead of developing a new pipeline around a newly
developed detection method, we require that our approach pro-
vides clear interfaces that allow for an easy exchange of developed
pipeline parts (e.g. the detection method). Moreover, implemented
modules should be easily extendable and novel modules should be
easily integratable into the pipeline flow.

3.2 Pipeline Overview
Our detection pipeline consists of four distinct modules, each de-
signed for a different task. We present an abstract illustration of the
architecture including the pipeline operation in Fig. 1 and describe
each pipeline module in the following.

ARES 2021, August 17–20, 2021, Vienna, Austria Drichel and Drury, et al.

3.2.1 Database Module. The database module is responsible for
collecting, normalizing, sanitizing, labeling, and storing of data
obtained from various data sources in a unified database. On the
one hand, gathered data is used to train and evaluate different types
of machine learning models. On the other hand, we utilize collected
cyber threat intelligence to validate the results of live classifica-
tions retrospectively. Naturally, this information can also be used
generally for retrospective analyses. We visualize this module in
the upper part of Fig. 1. The outcome of the database module, in
consideration to the pipeline flow, is a labeled dataset that can be
used for classifier training.

Using the example of generating labeled training data that can
be used for various types of machine learning models, we will now
discuss the specific components of the database module in detail.
We collect data from various sources to create a dataset, including
benign and malicious labeled data, in order to enable supervised
machine learning.

We obtain benign certificates directly from the CT logs. Since
the amount of certificates contained in these logs is very large,
we divide the CT streams into chunks and define an API which
allows for a convenient selection of benign certificates. In Fig. 1,
we represent selected chunks by hatched boxes in the upper left
part of the database module. We use chunks in order to obtain
diverse and representative data that contains certificates published
at different times of the day and different days of the week including
working and non-working days. The download process itself is
highly parallelized. The number of downloader threads, the size of
the chunks, the gap between the chunks and the time span to be
taken into account can be freely selected.

Since several major browsers require that a certificate has to
be published in at least two different logs in order to be displayed
without a warning, our download process might yield duplicate
certificates. The database module thus includes a data sanitization
process which removes duplicates. Additionally, we filter the benign
certificates against a phishing URL database that includes known
phishing URLs of the open source intelligence (OSINT) feeds of
PhishTank [34], PhishStats [33], and OpenPhish [30]. Certificates
usually contain more than one domain name, i.e., there are domains
in the subject alternative name (SAN) field in addition to the common
name (CN). We thus remove every certificate for which either the
included CN or one of the SANs matches the domain name of a
URL contained in our phishing URL database.

Further, we make use of Google Safe Browsing [17] which is
a service based on two components for checking web resources
on malicious content. The first component contains a list of hash
prefixes generated from malicious URLs. The second component
is an online service which can be queried if for a URL that is to
be checked, the generated prefix is included within the first com-
ponent. This two-component approach has the advantage of not
disclosing the actual URL visited to anyone, while reducing the
required number of online queries, as queries are only performed
when a matching hash prefix is present.

We thus calculate for the CN and for every SAN the hash prefixes
and remove all certificates for which we generate a collision with a
hash included in the Google Safe Browsing prefixes. Note, since a
hash collision is not a sufficient criterion for a URL being malicious,
we might also remove non-malicious certificates of our benign

labeled data with this procedure. However, due to large amount of
available benign training samples we prefer to remove a few benign
certificates over obtaining possibly contaminated data. Moreover,
this process saves us having to do any online queries.

We fetch new Google Safe Browsing prefixes as well as new
phishing URLs from PhishTank and PhishStats every hour. Known
phishing URLs from OpenPhish are fetched every twelve hours
due to the restricted update frequency for the feed that is free
of charge.1 In general, the update interval for the various data
sources is adjustable and new data sources can easily be added as
we have defined clear interfaces. For the already included cyber
threat intelligence feeds we implement normalization methods in
order to be able to store the data in a unified database, since every
data source provides data in a different format.

Lastly, we permit the filtering of obtained benign certificates
against a malicious domains list that is adjustable in order to en-
able the filtering of known malicious certificates that are not (yet)
included in the observed cyber threat intelligence feeds. Currently,
we do not make use of this filtering and thus our malicious domains
list is empty.

After these filtering steps we obtain benign labeled certificates
which we use for the training of a supervised machine learning
classifier.

We obtain malicious labeled data by downloading the certificates
of phishing URLs that are contained in our phishing URL database
using OpenSSL [31]. Note, often redirecting services such as URL
shorteners are used to hide the actual phishing URL.We still decided
against following redirects, opting to download the certificate of
the URL shortening service instead, as this approach is less likely
to be affected by website cloaking. Website cloaking (see e.g. [28])
is a method to evade detection by showing different versions of
a website depending on, e.g. the geolocation of the request. By
requiring only the lower level TLS connection for the certificate
download we minimize the effect of possible cloaking attempts.
In order to remove potential benign certificates from the set of
malicious samples we filter against a benign domains list which
contains common URL shorteners as well as common web hosting
services. In total, we include 177 benign services to our filtering
list after analyzing downloaded certificates and by using domain
knowledge.

Additionally, we remove all duplicates and filter the CN as well
as every SAN included in the malicious certificates using lists that
include very popular domains. In detail, we filter against the top
1,000 Alexa [1] and top 1,000 Tranco [22] domains. The reason for
this filtering is that it is unlikely that a phishing website is hosted
on very popular domains.

With this procedure we are able to generate labeled training
data. Note, the benign training data is only generated once and used
for the training of machine learning classifiers. The gathering of
cyber treat intelligence (e.g. for the phishing URL database) and the
download of phishing certificates is, however, a continuous process.
This is due to the fact that phishing websites often only have short
lifetimes. Hence, we need to download the malicious certificates as
soon as possible before the website is possibly removed. In general,
training data can be generated at will and used, for example, to

1https://openphish.com/phishing_feeds.html online, accessed 2021-01-06

https://openphish.com/phishing_feeds.html

Finding Phish in a Haystack ARES 2021, August 17–20, 2021, Vienna, Austria

improve an already trained classifier or to train a new one, as soon as
enough new data has been collected. Moreover, the databasemodule
can easily be extended by incorporating further filtering or by
including additional cyber threat intelligence feeds. The generated
labeled training data is further processed by the training module
which is described in the following.

3.2.2 Training Module. The training module is responsible for
providing a trained model that is ready for live classification or
retrospective analysis. It is illustrated in the left middle part of
Fig. 1. Since this module is equipped with the generated labeled
dataset from the database module, it is possible to train a classifier
using supervised machine learning. However, this module also
allows unsupervised machine learning models to be trained by
simply ignoring the labels in the generated dataset. In addition,
it is possible to define classification methods such as rule-based
approaches that do not require any training at all.

Further, it is possible to train feature-based as well as feature-less
(i.e. deep learning based) approaches. Feature-based approaches,
such as support vector machines (SVMs) or random forests (RFs),
require the definition of features and the implementation of re-
spective feature extraction methods. Contrarily, for feature-less
approaches, such as recurrent (RNNs) or convolutional neural net-
works (CNNs), it is necessary to provide methods that encode all
information that is relevant for classification such that it can be
consumed by the neural network. In our case, such encoding meth-
ods could simply encode the characters of the CN and the SANs
included in a certificate via integer or one-hot encoding.

The result of the training module is a classifier which is ready to
be used. We additionally serialize and store the classifier in order
to enable result reproduction and the sharing of trained classifiers.

3.2.3 Classification Module. The classification module uses the
trained model provided by the training module for classifying the
certificates published in the CT logs. We display this module on
the right middle part of Fig. 1. Here, it is possible to manually se-
lect a time span that should be taken into account for retrospective
analysis or whether to perform live classification. Similar to the gen-
eration of the benign labeled training data in the database module,
the respective CT logs that should be investigated can be selected
freely. However, here we examine the full certificate streams in-
stead of chunks. The output of the classification module are the
predicted labels of the certificates published in the CT logs. These
are output in real-time during live classification. Additionally, we
pass the classification results to the intelligence module for further
analysis.

3.2.4 Intelligence Module. The intelligence module receives the
results passed by the classification module, tries to validate them,
optionally performs post-processing, and processes the results into
informative result views.We present the components of this module
in the lower part of Fig. 1.

One of the main tasks of this module is the verification of the re-
sults obtained from the classification module. Since we try to detect
phishing websites even before they are activated, the classification
results cannot be verified due to missing ground truth (i.e. when
we detect a phishing certificate published in the CT logs in real-
time it is unlikely that the corresponding phishing URL is already

included in any OSINT feed). This is why the verification of live
detection results is hardly possible. However, our verification pro-
cess is particularly useful for research purposes and retrospective
analyses. Moreover, the live classification results can be stored and
later validated when new phishing URLs are added to the OSINT
feeds. In detail, to verify classification results we make use of our
offline phishing URL database, the Google Safe Browsing service,
and VirusTotal2.

In addition, the intelligence module provides an interface which
allows for easy post-processing of classification results. Currently,
we implemented a method which visits the domains contained in
the CN and SAN fields for certificates that were labeled as positive
by a classifier and makes a screenshot of the landing page. These
screenshots can then be examined manually or by an automatic ap-
proach to confirm the classification results. Other post-processing
approaches can also easily be added. In particular, it might be possi-
ble to incorporate further automated filtering, which might reduce
the number of false positives, but is too costly to perform for every
domain in the CT logs. Here, possible approaches are retrieving
and analyzing the content of the websites, or obtaining intelligence
from additional sources such as WHOIS [8].

Finally, the intelligence module calculates several metrics based
on the results transferred by the classification module and presents
them in aggregated results views. In addition, we perform a thresh-
old analysis that can be used to determine the optimal operating
point at any given false positive rate.

4 NOVEL & EXISTING CLASSIFIERS
In this section, we introduce newly developed classifiers for certifi-
cate classification and present state-of-the-art classifiers proposed
in related work. We evaluate and compare the presented classifiers
in Section 5 to test our proposed pipeline. Apart from feature-based
classifiers, we analyze deep learning classifiers, as well as two state-
of-the-art approaches for phishing certificate detection. For the
features-based approaches we present our feature engineering and
selection efforts which lay the basis for the developed machine
learning classifiers.

4.1 Classifying Domains
We tackle the phishing certificate detection task by dividing the
classification of a single certificate into multiple domain name
classification tasks and combining the results for a final decision.
Certificates usually include multiple domain names in the subject
alternative name (SAN) field in addition to the common name (CN).
Since many of our envisioned features are to be extracted from
domain names, we require a way to combine these separate domains
into a single classification score for a given certificate. We achieve
this by performing individual predictions for each domain name
included in a certificate and combining the results using a meta
classifier. We test several different meta classifiers: (a) maximum,
(b) minimum, (c) average, and (d) median. Each meta classifier
uses the output of the domain classifiers and simply returns the
maximum, minimum, average, or median value, respectively, as the
classification result of the whole certificate. Note, that the domain
classifiers still utilize features from both domain and certificate,
2https://www.virustotal.com/ online, accessed 2021-01-06

https://www.virustotal.com/

ARES 2021, August 17–20, 2021, Vienna, Austria Drichel and Drury, et al.

instead of only domain features.We chose this simple approach over
the alternative of classifying only information from the domains
with the domain classifier, and using the certificate-specific features
only in the meta classifier, as it does not require an additional
training step. We denote the combination of domain classifiers
with a maximum, minimum, average, and median meta classifier by
appending -max, -min, -avg, and -med, respectively, to the actual
classification method.

4.2 Feature Engineering & Selection
To create a suitable feature set, we analyzed classifiers from related
work [4, 11, 15, 38, 40] and developed novel features by thoroughly
analyzing benign and phishing certificates.We focus on context-less
features, i.e. features that can be extracted from a single certificate,
and omit features that are not relevant to our use-case (e.g. validity
status of certificates, as CT logs only contain valid certificates). We
do not obtain any intelligence from other sources (such as from
WHOIS [8]) in order to be independent of third party services and
to ensure real-time classification capabilities.

Overall, the features we investigate can be split into three cate-
gories: (1) certificate-based features, (2) domain-based features and
(3) keyword-based features. The first category contains features
that are extracted from the certificate itself ignoring included do-
main names. Instead, domain name specific features are included
in the second category, except for the occurrence of specific key-
words in the domain name, which are included in the third category.
We distinguish these feature sets as the list of keywords needs to
be updated and is very specific, compared to the more general
domain-based features.

The list of suspicious keywords is created from PhishTank URLs
by analyzing parts of URLs split by dots after removing the public
suffixes (top-level domains). We sort the keyword candidates ac-
cording to the number of their occurrences and reduce the list to 47
keywords by removing words that are too short or too general. We
use each collected keyword for an individual feature which marks
the presence of a keyword within a domain name. Additionally, we
include two features which indicate the presence of any keyword
and the total count of keywords in the domain.

In total, we gathered and engineered 126 features, 22 certificate-
based features, 55 domain-based features, and 49 keyword-based
features. We present the full list of keywords that we have selected
for the keyword-based features in Table 2 in the Appendix. Ad-
ditionally, we list certificate-based and domain-based features in
Table 3 in the Appendix. There, we present extracted feature values
for a benign and a phishing certificate to make the features easily
accessible.

After feature engineering, we define two different feature sets.
The first feature set contains all engineered features from all three
categories and serves as baseline. The second feature set is created
by performing feature selection on the features of the first two
categories to ensure that only features that are actually relevant
to the classification process are included. Additionally, reducing
the number of features also reduces the required time for feature
extraction and can improve a classifier by making it more robust
to noise. We are limiting this feature set to a subset of features
from the first two categories, thereby removing all keyword-based

features. We argue, that this makes it more generally applicable, as
it does not contain suspicious keywords, that cover specific targets
and languages. For comparison, we evaluate classifiers using both
feature sets, i.e. classifiers that make use of all 126 engineered
features including keyword-based features and classifiers that only
use a subset of domain- and certificate-features.

We perform feature selection by training an RF-based classifier
and ranking its features by their importance according to the mean
decrease in impurity (MDI) [25]. We exclude features that are not
important or exhibit high variances. This results in a total of 50 fea-
tures which belong to the first two feature categories. The selected
features are marked in Table 3 in the Appendix. Note, feature selec-
tion is performed using a training dataset (see Section 5.1.1) that is
completely disjoint to the actual test data used in our comparative
evaluation. In the following, we mark the utilized feature set of a
classifier via an index (either all or selected).

4.3 Random Forest based Classifiers
The first batch of classifiers we investigate on our proposed pipeline
are random forest (RF) classifiers. It has been shown that RF classi-
fiers are well suited for the phishing website classification problem
in the past (e.g. [4, 11, 35, 39]). For both feature sets (all and se-
lected), we evaluate classifiers using all four meta classifier. This
results in a total of eight classifiers that are to be evaluated. For
all RF-based classifier we use the default hyperparameters (set by
scikit-learn [32]) but increase the number of estimators to 200.

4.4 Deep Learning based Classifiers
To compare the feature-based approaches above to deep learning
models, we create classifiers based on recurrent neural networks
(RNNs). RNNs have been shown to be suitable for URL classification
tasks in several domains before (e.g. [4, 40, 43]).

For neural network based classifiers, feature engineering and
selection is not necessary. However, information that is relevant for
classification has to be encoded and provided to the classifier. We
thus utilize all engineered features as a sort of certificate encoding
and provide this information to the model. In addition, we provide
the raw domain names using characterwise integer encoding to the
model. By choosing this approach, the neural network can (1) learn
to extract relevant information from a domain name and (2) select
the relevant information from all provided features by its own.

For the neural network classifier we choose an architecture in
which the domain name and the features are consumed separately.
We present the architecture of our RNN-based classifier includ-
ing the input and output dimensions in Fig. 2. The input data is
processed by distinct hidden layers and afterwards combined by
concatenation for further processing. The final prediction is out-
put by a fully connected layer. In detail, the RNN-based approach
uses one unidirectional long short-term memory (LSTM) layer for
the domain name and one bidirectional LSTM layer to process the
features. Before a domain name is fed into the model, we convert
every included character to a unique integer and pad the result with
zeros from the left side to the maximal domain length of 253 char-
acters [26] as proposed in [13]. This ensures that the model is able
to process domain names at any length while using batch learning.
The resulting encoded domain is processed by an embedding layer

Finding Phish in a Haystack ARES 2021, August 17–20, 2021, Vienna, Austria

FeaturesAll

Domain Name

Bidirectional LSTM

Embedding

LSTM

Concatenation

Dense

Dense

Score

6432

96

10

1

253

253x128 126

Figure 2: Network architecture of the RNN-based classifier.

that adds additional information about the relationships between
characters to the encoding. We choose an embedding dimension of
128 and thus project every character to a unique 128-dimensional
vector. The embedded input is subsequently processed by an LSTM
layer.

We also experimented with the RNN-based architecture pro-
posed in [40] but could neither reproduce the results stated in the
original paper nor achieve better results than with our engineered
architecture.

We optimized the neural network architecture iteratively using
only data from the training set. As for the feature-based approach,
this classifier also make use of meta classifiers, again using the
maximum, minimum, average, and median variants.

4.5 Classifying All Domains at Once
In Section 4.1, we presented our approach for certificate classifi-
cation by performing several domain classification tasks and com-
bining the results using a meta classifier. In order to show that the
certificate classification problem can also be solved using a single
classification step and to demonstrate that different types of detec-
tion methods can be used in our pipeline, we here present a second
approach that considers all domain names included in a certificate
combined in one single classification step.

In this approach, we extract features for each individual domain
included in a certificate and create a new feature vector that con-
tains the average of the domain feature vectors for each feature.
Additionally, depending on the used feature set, we also include
certificate-based and keyword-based features. This makes it possi-
ble to combine variable numbers of domains into a single feature
vector of constant length, an important requirement as the number
of domains per certificate can vary greatly. Further, this enables the
use of the same architecture of classifiers for both approaches, as
they use the same features. We evaluate RF-based approaches using
each defined feature set but do not implement a one-step certificate
classifier approach for the deep learning model as we would need
to average domain names. We denote the approaches that classify
the average of all feature vectors by appending -cert to the actual
classification method.

4.6 State-of-the-Art Classifiers of Related Work
In addition to the classifiers we newly developed, we evaluate two
state-of-the-art approaches for phishing certificate detection pro-
posed in related work. We adapted both approaches slightly to
comply with the interfaces defined in the training module.

4.6.1 Sakurai. The first classifier, by Sakurai et al. [36], uses only
domain names as input, and automatically creates regular expres-
sions that match malicious domains following the same pattern.
This classifier does not return a classification score between 0 and
1, it only returns information about expressions that match the
given domain. We therefore modify the output to return the highest
entropy reduction rate among all matching expressions (see [36]) as
classification score. Since the classifier is designed to find malicious
domains, not certificates, we return the highest matching domain’s
score when combining the classification score for certificates, which
corresponds to using the maximum meta classifier.

4.6.2 Phishing Catcher. Lastly, we evaluate Phishing Catcher [44], a
rule-based certificate classifier, where each rule potentially increases
the classification score. Rules include, for example, inclusion of sus-
picious keywords in any of the domains, or the usage of suspicious
top-level domains. The only non-domain specific feature indicates,
whether the issuer of the certificate matches the popular free cer-
tificate authority “Let’s Encrypt”. It is unique compared to the other
classifiers in that it does not require any training, as it is based
purely on heuristics based on domain knowledge. We modify this
classifier slightly to return a score between zero and one, instead
of printing messages for suspicious domains.

5 EVALUATION
In this section, we present our evaluation which is divided into two
parts. In Section 5.1, we evaluate and compare different approaches
for distinguishing benign certificates from certificates created for
phishing websites. Subsequently, in Section 5.2, we evaluate our
proposed pipeline in consideration to the design goals defined in
Section 3.1.

5.1 Classifier Evaluation
First, we present the datasets utilized for the comparative evalua-
tion of various phishing certificate detection classifiers. Thereafter,
we present our evaluation method including the metrics that we
observe. Lastly, we discuss the classifier evaluation results.

5.1.1 Datasets. Below we describe the dataset we use for classifier
training and provide an overview of the CT log data that we use
for our comparative evaluation.

Malicious labeled training data. We use the database module (see
Section 3.2.1) to generate malicious labeled training data. In detail,
we obtain malicious certificates by downloading the PhishTank
URL feed daily for the complete year of 2019. In addition, we col-
lect further malicious certificates from the sources PhishTank and
PhishStats by downloading their feeds hourly, and from OpenPhish
by downloading its feed every twelve hours for the months January
to May 2020. In total, we thereby collect 56,479 unique malicious
certificates which we utilize for training classifiers.

ARES 2021, August 17–20, 2021, Vienna, Austria Drichel and Drury, et al.

Benign labeled training data. We obtain benign labeled training
data also through our database module. Here, we download certifi-
cates from April 2020 of the Google Xenon [16] logs. These logs
are some of the fastest advancing CT logs at time of writing. We
download 70,889 unique benign certificates from which we ran-
domly select 56,479 certificates (same number as malicious) for the
training process.

We combine the collected benign and malicious certificates into
a balanced training set that includes 112,958 certificates in total. In
prior experiments, we tested different imbalanced data distributions
in order to get closer to the actual distribution of the certificates in
the CT logs. However, we could not measure a significant difference
in performance between classifiers trained on imbalanced data.
Thus, in the following we only use a balanced dataset to train the
various classifiers.

Moreover, we experimented with different sources for obtaining
benign data. For instance, we downloaded certificates from popu-
lar websites according to Cisco Umbrella [7]. However, classifiers
trained on this data generally performed worse on a separate vali-
dation set containing actual CT log data. As such, we do not include
them in our evaluation.

CT log test data. We chose the Google Xenon [16] logs for our
comparative evaluation. As these logs are scoped, i.e. certificates
that are included in Xenon2020 have an expiration date in 2020, we
analyze all certificates published in the first week of May 2020 in
Xenon2020, Xenon2021, Xenon2022, and Xenon2023. In total, these
logs contain approximately 22.5 million unique certificates for the
period under investigation. By selecting the first week ofMay as test
data, we guarantee data chronology and disjoint training/testing
data.

We released the utilized training dataset together with the source
code for result reproducibility [12]. Note, the used test data can
easily be retrieved by our pipeline.

5.1.2 Evaluation Overview. We use the following software pack-
ages for our comparative evaluation: Python 3.7.3, scikit-learn 0.22,
TensorFlow 2.3.0, Keras 2.4.3, CUDA 10.1, and cuDNN 7.6.5. The
deep learning based approaches are executed on an NVIDIA Tesla
V100 GPU. All other classification methods make use of Intel Xeon
Platinum 8160 processors@2.1GHz. Note, our implementation is
highly parallelized and all classification methods can be scaled with
either more GPUs or with a greater number of CPUs (or CPU cores
in general).

We train classifiers using the training dataset and evaluate them
on the real-world CT log test data. The evaluation, and subsequent
validation, was performed in December 2020, to ensure enough time
has passed for malicious websites to be added to malicious domain
feeds. Note, that our evaluation approach is basically equivalent to
performing the classifications in real time and verifying the results
later, as the CT logs are append-only and therefore contain the
same certificates in both settings.

In detail, we split a small portion from the training data for a
validation set that is used either during the training in case of the
deep learning based approaches, or after the training in case of
RF-based approaches for model assessing purposes. We train the
deep learning based models until there are no further improvement
on the validation set for at least three consecutive epochs.

Figure 3: Model validation results: receiver operating char-
acteristic curve of the RFall domain classifier using all four
meta classifiers.

The Sakurai classifiers use only domain names as input and auto-
matically create regular expressions that match malicious domains
following the same pattern.We therefore use only one domain name
from each certificate for training, namely the one that matches most
closely the original URL from the malicious URL feed. As the classi-
fier distinguishes groups of domains by the number of dots present,
we split our training set accordingly, and use up to 2,000 domains
per group. We train on all possible domain names for groups for
which less than 2,000 samples are available. For all other configu-
ration options, we use the settings recommended in the original
paper.

The Phishing Catcher classifier does not need any training at all
since its classification relies on predefined rules.

We choose the false positive rate (FPR) and the true positive
rate (TPR) as our evaluation metrics which are suitable measures
especially for highly imbalanced data [10]. Since there is a far larger
amount of benign certificates in the logs than phishing certificates,
and the amount of certificates is large in general, we argue that a
low FPR is the most important attribute of a suitable classifier. In
addition, we observe the TPR which is a proxy for determining the
amount of detected phishing certificates.

Note, the TPRs which we present are only estimates as we clas-
sify real-world data without any ground truth. We can thus only
present a lower limit of the actual TPR because not every malicious
certificate which is flagged positive by a classifier is verifiable via
our verification process in the intelligence module. It is possible
that there is no entry in our database for a correctly classified mali-
cious certificate because the corresponding phishing website has
not yet been reported to any of the observed OSINT feeds. This
also implies that the FPRs presented may be slightly lower than
stated.

As an example for model validation, in Fig. 3 we display the
receiver operating characteristic curve obtained after training the
domain RFall classifier (i.e. the RF-based domain classifier using all
engineered features) for each of the four meta classifiers.

Finding Phish in a Haystack ARES 2021, August 17–20, 2021, Vienna, Austria

The receiver operating characteristic curve enables us to select
an operating point which, in our further evaluation, is likely to
produce very few false positive results. In this diagram, we plot the
x-axis finer as the FPR is the most important attribute of a classifier
for our use-case. The approaches which utilize the minimum and
average meta classifier are promising and achieve a TPR of over
10% at a very low FPR. We display a baseline which corresponds to
random guessing as a barely visible dashed line at the bottom of
the diagram. The baseline indicates that all four approaches work
significantly better than random guessing. While a TPR of around
10% seems to be rather low, we argue that a classifier set at such
an operating point can detect several phishing certificates without
generating too many false positives. Note, these are only model
validation results. The actual results of the comparative evaluation
on real-world CT log data are presented in the next subsection.

5.1.3 Results. We present the results of the comparative evaluation
in Table 1. Here, we display the total amount of detected phishing
certificates and the estimated TPRs at fixed FPRs of 10−3 and 10−4
which correspond to a total of 22,510 and 2,251 false positives,
respectively, for classifying the Google Xenon logs for a full week.

At the fixed FPR of 10−3, the rule-based classifier, Phishing
Catcher, achieves by far the best results. At an FPR of 10−4, the
classifier of Sakurai et al. detects the most phishing certificates
followed by Phishing Catcher. Our developed RF-based and RNN-
based approaches achieve worse results. In general, the domain
classifiers in combination with a meta classifier achieve better re-
sults compared to the one-step certificate classifiers which average
the feature vectors. The domain classifiers achieve better results
using the minimum and average meta classifiers than by using the
maximum or the mediummeta classifiers. The RF-based approaches
which make use of all features (including keyword-based features)
perform generally better than the classifiers that utilize the selected
feature set.

We reckon the worse results obtained by the RF-based and RNN-
based approaches compared to the classifier of Sakurai et al. and
Phishing Catcher to be caused by noisy training data. Since we
obtained malicious labeled samples by downloading the certificates
from URLs included in the various OSINT feeds, we also obtained
benign certificates that were used on phishing websites hosted on
compromised server infrastructure. Although, we filtered these
certificates against our benign domains list, we reckon that a signif-
icant amount of benign certificates is falsely labeled as malicious
as we only filtered against known redirecting and hosting services.
According to estimates, 62%− 73% of phishing websites are actually
hosted on compromised infrastructure [20, 21].

This is why the approaches by Sakurai et al. and Phishing Catcher
perform slightly better than the machine learning classifiers. Phish-
ing Catcher solely makes use of rules that were created by domain
experts and therefore is not affected by compromised server cer-
tificates. The classifier proposed by Sakurai et al., on the other
hand, classifies samples based on generated regular expressions that
match malicious domains following the same pattern. Although,
this classifier is trained on the same noisy data, it has a minor influ-
ence on the classification performance as we observe fewer patterns
within the domain names of compromised server certificates.

Table 1: Classifier Evaluation Results

Classifier
FPR=0.001 FPR=0.0001

#TPs TPR #TPs TPR

RFall-min 272 0.00418 55 0.00086
RFall-avg 243 0.00374 55 0.00086
RFall-med 232 0.00357 40 0.00062
RFall-max 244 0.00375 - -

RFall-cert 145 0.00223 - -

RFselected-min 216 0.00332 39 0.00060
RFselected-avg 208 0.00320 36 0.00055
RFselected-med 189 0.00291 29 0.00045
RFselected-max 148 0.00228 - -

RFselected-cert 114 0.00176 - -

RNN-min 352 0.00541 35 0.00054
RNN-avg 366 0.00563 36 0.00056
RNN-med 347 0.00533 34 0.00053
RNN-max 206 0.00317 20 0.00032

Sakuarai et al. 242 0.00373 117 0.00180
Phishing Catcher 1102 0.01692 110 0.00170

The fact that the RFall classifiers achieve better results than the
more general RFselected classifiers can be explained by the absence
of keyword-based features within the selected feature set and by
the fact that the selection was performed on the noisy training data.

With this evaluation, we were able to show that different types
of machine learning classifiers can be used within the pipeline to
detect phishing certificates. However, future research is needed as
they are not working optimally.

5.2 Pipeline Evaluation
In the following, we evaluate the phishing certificate detection
pipeline itself. The goal of the pipeline creation was to build a
system that can be used on real-world CT log data and accomplishes
our design goals defined in Section 3.1. Subsequently, we discuss
whether we could achieve our envisioned design goals.

DG1) Handle Data Processing. Our pipeline is able to collect, nor-
malize, combine, filter, and label data from various data sources.
This data is leveraged by our approach in order to train and evalu-
ate classifiers. Moreover, we make use of the gathered intelligence
to provide a means of result validation. We thus argue that our
approach is able to handle complex data in different formats and
from various data sources.

DG2) Setup for Comparative Evaluations. In Section 5.1, we com-
paratively evaluated several self-developed classifiers as well as
classifiers that were proposed in related work. This shows that our
approach enables the assessment of newly developed and improved
classifiers in a unified setting. By providing this evaluation frame-
work, we hope to bring the research community closer together
as researchers can easily compare their developed classifiers with
those proposed in related work.

ARES 2021, August 17–20, 2021, Vienna, Austria Drichel and Drury, et al.

DG3) Speed & Scalability. We performed the retrospective eval-
uation of a whole week of multiple CT logs (see Section 5.1) in
approximately one day. For instance, a single pipeline execution
using RF classification with all four different meta classifiers was
executed on 24 cores of an Intel Xeon Platinum 8160 processor@2.1
GHz, for which approximately 55 GB of RAM were required. We
thus argue that our approach is able to process the large amount
of certificates published in the CT logs as soon as they are added
to the logs. Moreover, we made sure that our pipeline scales well
with increasing computational power.

DG4) Modularity & Extendability. Extendability can hardly be eval-
uated by us. However, we designed our pipeline very modular and
defined clear interfaces that allow for an easy integration of new
modules. Moreover, we were able to show during our comparative
evaluation that the training module can easily be exchanged.

6 DISCUSSION & FUTUREWORK
The main focus of this work lies in the detection pipeline itself and
not in developing the best phishing certificate detection classifiers.
In our comparative evaluation, we have shown that various types
of classifiers, such as feature-based, deep learning based, and rule-
based approaches, can be used inside our pipeline. While our results
show that it is possible to analyze several CT logs in real-time and to
detect phishing certificates even before the corresponding phishing
websites have been activated, the classifiers require future research.
By classifying the Google Xenon logs for a full week we could detect
117 malicious certificates while obtaining 2,251 false positives using
the best evaluated classifier at a fixed FPR of 10−4.

While our approach enables the detection of certificates that
are intentionally created for phishing websites, our approach is
naturally not able to detect benign certificates used for phishing
websites that are hosted on compromised server infrastructure. Fu-
ture work could improve the filtering process during the creation of
the malicious labeled training data in order to obtain less noisy data.
Unfortunately, the detection of certificates that are used on phishing
websites hosted on compromised server infrastructure is likely not
possible when the classification solely relies on information that is
obtainable from a single certificate. A further general restriction of
using CT logs for phishing detection is, that potentially malicious
subdomains can be removed from the certificate by using wildcard
domain names.

As for the verification of certificates, our pipeline is currently
not able to provide a complete ground truth for all certificates in
CT logs. The ground truth labeling depends on the usage of third-
party repositories, such as PhishTank, Google Safe Browsing, or
VirusTotal, that are neither guaranteed to be complete (i.e., contain
all phishing websites), nor do they always provide information
on newly created websites. An alternative approach to the usage
of third-party repositories would be to manually verify potential
phishing websites. Here, the pipeline is able to generate alerts
for possible phishing websites, that can then be verified by an
expert. Contrary to the verification using external sources, we
argue that manual verification is likely to be more effective when
classifying the certificates of previously unseen domains. This is due
to the fact that third-party repositories have a delay when adding
new websites, while phishing websites usually have short lifetimes.

It is therefore unlikely that the third-party repositories include
reliable information on all domain names that are added to the
CT logs. There are, however, also some problems with the manual
verification approach. First, many phishing websites use additional
information in the URL path, that is not available from the certificate.
Guessing or otherwise acquiring this information might prove to be
quite difficult, and might, together with using wildcard certificates,
become an option for phishers to hinder the early detection that is
offered by CT logs. Further, the short lifetime of phishing websites
implies the need to query potential phishing websites often, to be
able to notice the transition from empty or placeholder page to the
actual phishing website. Even though we were able to detect and
manually verify several previously unknown phishing websites in
preliminary tests, the amount of empty or placeholder websites we
encountered was far higher. Finally, manual verification requires
human interaction, and can therefore not be automated.

In this work, we have shown the feasibility of detecting phish-
ing websites prior to their launch. However, an interesting study
for future work is to analyze the profit in time that is obtainable
by using our approach, i.e. to measure how long it takes until a
phishing website appears in one of the observed OSINT feeds after
the corresponding certificate was correctly detected by a classifier.

7 CONCLUSION
In this work, we presented a phishing certificate detection pipeline
which allows for the classification of phishing certificates onCT logs
in real-time, i.e., as soon as they are added to the logs. Additionally,
the pipeline enables retrospective analysis for research purposes
and tackles the missing ground truth problem by providing a means
of verification. The pipeline developed is modular and extendable
and provides a convenient framework for developing new certifi-
cate detection classifiers and comparing them with state-of-the-art
approaches. In addition, it enables the convenient generation of
real-world data that can be used for training various types of ma-
chine learning classifiers. By providing this framework, we hope
to bring the research community closer together and to speed up
future research. We have evaluated the pipeline by performing a
comparative evaluation of several self-developed classifiers and
two state-of-the-art approaches proposed in related work showing
the benefits of our approach. We hope that this work brings the
research community one step further towards closing the phishers’
window of opportunity.

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agree-
ment No 833418. It was also supported by the research training
group “Human Centered Systems Security” sponsored by the state
of North-Rhine Westphalia. Simulations were performed with com-
puting resources granted by RWTHAachenUniversity under project
rwth0438. We are grateful to the authors of [36] for providing the
source code of their classifier. We thank VirusTotal for providing
us access to the Academic API.

REFERENCES
[1] Alexa Internet. 2021. Alexa top sites on the web. https://www.alexa.com/topsites

online, accessed 2021-01-06.

https://www.alexa.com/topsites

Finding Phish in a Haystack ARES 2021, August 17–20, 2021, Vienna, Austria

[2] Apple. 2021. Apple’s Certificate Transparency policy. https://support.apple.
com/en-us/HT205280 online, accessed 2021-01-06.

[3] APWG. 2020. Trends Report Q3 2020. https://docs.apwg.org/reports/
[4] Alejandro Correa Bahnsen, Eduardo Contreras Bohorquez, Sergio Villegas, Javier

Vargas, and Fabio A González. 2017. Classifying phishing URLs using recurrent
neural networks. In APWG Symposium on Electronic Crime Research. IEEE.

[5] Censys. 2021. Censys: A source of Internet scan data in the world. https:
//censys.io/ online, accessed 2021-01-06.

[6] Chromium. 2021. Chrome Certificate Transparency Policy. https://chromium.
github.io/ct-policy/ct_policy.html online, accessed 2021-01-06.

[7] Cisco Umbrella. 2021. Cisco Umbrella 1 Million — a free list of the top 1 mil-
lion most popular domains. https://umbrella.cisco.com/blog/cisco-umbrella-1-
million online, accessed 2021-01-06.

[8] Leslie Daigle. 2004. WHOIS Protocol Specification. Technical Report. RFC3912.
https://tools.ietf.org/html/rfc3912

[9] Avisha Das, Shahryar Baki, Ayman El Aassal, Rakesh Verma, and Arthur Dunbar.
2020. SoK: A Comprehensive Reexamination of Phishing Research From the
Security Perspective. IEEE Communications Surveys Tutorials 22, 1 (2020).

[10] Jesse Davis and Mark Goadrich. 2006. The Relationship between Precision-Recall
and ROC Curves. In International Conference on Machine Learning. ACM.

[11] Zheng Dong, Apu Kapadia, Jim Blythe, and L. Jean Camp. 2015. Beyond the lock
icon: real-time detection of phishing websites using public key certificates. In
APWG Symposium on Electronic Crime Research. IEEE.

[12] Arthur Drichel, Vincent Drury, Justus von Brandt, and Ulrike Meyer. 2021. Source
Code and Datasets. https://gitlab.com/rwth-itsec/ctl-pipeline

[13] Arthur Drichel, Ulrike Meyer, Samuel Schüppen, and Dominik Teubert. 2020.
Analyzing the Real-World Applicability of DGA Classifiers. In International Con-
ference on Availability, Reliability and Security. ACM.

[14] Vincent Drury and Ulrike Meyer. 2019. Certified phishing: taking a look at
public key certificates of phishing websites. In Symposium on Usable Privacy and
Security. USENIX Association.

[15] Edona Fasllija, Hasan Ferit Enişer, and Bernd Prünster. 2019. Phish-Hook: Detect-
ing Phishing Certificates Using Certificate Transparency Logs. In International
Conference on Security and Privacy in Communication Systems. Springer.

[16] Google. 2021. Google Xenon 2020-2023 certificate transparency logs.
https://ct.googleapis.com/logs/xenon2020/
https://ct.googleapis.com/logs/xenon2021/
https://ct.googleapis.com/logs/xenon2022/
https://ct.googleapis.com/logs/xenon2023/.

[17] Google Safe Browsing. 2021. Blocklist service for web resources that contain
malicious content. https://safebrowsing.google.com/ online, accessed 2021-01-06.

[18] IC3. 2019. 2019 Internet Crime Report. https://www.ic3.gov/Media/PDF/
AnnualReport/2019_IC3Report.pdf

[19] Ben Laurie, Adam Langley, and Emilia Kasper. 2013. Certificate Transparency.
Technical Report. RFC6962. https://tools.ietf.org/html/rfc6962

[20] Sophie Le Page and Guy-Vincent Jourdan. 2019. Victim or Attacker? A Multi-
dataset Domain Classification of Phishing Attacks. In International Conference on
Privacy, Security and Trust. IEEE.

[21] Sophie Le Page, Guy-Vincent Jourdan, Gregor V Bochmann, Iosif-Viorel Onut, and
Jason Flood. 2019. Domain classifier: Compromised machines versus malicious
registrations. In International Conference on Web Engineering. Springer.

[22] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczynski, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In Network and Distributed System
Security Symposium. Internet Society.

[23] Let’s Encrypt. 2021. Certificate Transparency (CT) Logs. https://letsencrypt.org/
docs/ct-logs/ online, accessed 2021-01-06.

[24] Bingyu Li, Jingqiang Lin, Fengjun Li, Qiongxiao Wang, Qi Li, Jiwu Jing, and
Congli Wang. 2019. Certificate transparency in the wild: Exploring the reliability
of monitors. In Conference on Computer and Communications Security. ACM.

[25] Gilles Louppe, Louis Wehenkel, Antonio Sutera, and Pierre Geurts. 2013. Un-
derstanding variable importances in forests of randomized trees. In Advances in
Neural Information Processing Systems. Curran Associates, Inc.

[26] Paul Mockapetris. 1987. Domain Names - Implementation and Specification. Tech-
nical Report. RFC1035. https://tools.ietf.org/html/rfc1035

[27] Rami M Mohammad, Fadi Thabtah, and Lee McCluskey. 2014. Predicting phish-
ing websites based on self-structuring neural network. Neural Computing and
Applications 25, 2 (2014).

[28] Adam Oest, Yeganeh Safei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and
Gary Warner. 2018. Inside a phisher’s mind: Understanding the anti-phishing
ecosystem through phishing kit analysis. In APWG Symposium on Electronic
Crime Research. IEEE.

[29] Adam Oest, Penghui Zhang, Brad Wardman, Eric Nunes, Jakub Burgis, Ali Zand,
Kurt Thomas, Adam Doupé, and Gail-Joon Ahn. 2020. Sunrise to Sunset: Analyz-
ing the End-to-end Life Cycle and Effectiveness of Phishing Attacks at Scale. In
USENIX Security Symposium.

[30] OpenPhish. 2021. Open source phishing intelligence feed. https://openphish.com/
online, accessed 2021-01-06.

[31] OpenSSL. 2018. Cryptography and SSL/TLS Toolkit. https://www.openssl.org/
online, accessed 2021-01-06.

[32] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12 (2011).

[33] PhishStats. 2021. Fighting phishing by gathering, enhancing and sharing phishing
information. https://phishstats.info/ online, accessed 2021-01-06.

[34] PhishTank. 2021. A community-based phishing verification system. https:
//www.phishtank.com/ online, accessed 2021-01-06.

[35] Ozgur Koray Sahingoz, Ebubekir Buber, Onder Demir, and Banu Diri. 2019. Ma-
chine learning based phishing detection from URLs. Expert Systems with Applica-
tions 117 (2019).

[36] Yuji Sakurai, Takuya Watanabe, Tetsuya Okuda, Mitsuaki Akiyama, and Tatsuya
Mori. 2020. Discovering HTTPSified PhishingWebsites Using the TLS Certificates
Footprints. In European Symposium on Security and Privacy Workshops. IEEE.

[37] Quirin Scheitle, Oliver Gasser, Theodor Nolte, Johanna Amann, Lexi Brent, Georg
Carle, Ralph Holz, Thomas C. Schmidt, and Matthias Wählisch. 2018. The Rise
of Certificate Transparency and Its Implications on the Internet Ecosystem. In
Internet Measurement Conference. ACM.

[38] Samuel Schüppen, Dominik Teubert, Patrick Herrmann, and Ulrike Meyer. 2018.
FANCI: Feature-Based Automated NXDomain Classification and Intelligence. In
USENIX Security Symposium.

[39] Abdulhamit Subasi, Esraa Molah, Fatin Almkallawi, and Touseef J Chaudhery.
2017. Intelligent phishing website detection using random forest classifier. In In-
ternational Conference on Electrical and Computing Technologies and Applications.
IEEE.

[40] Ivan Torroledo, Luis David Camacho, and Alejandro Correa Bahnsen. 2018. Hunt-
ingmalicious TLS certificates with deep neural networks. InWorkshop onArtificial
Intelligence and Security. ACM.

[41] Verizon. 2020. 2020 Data Breach Investigations Report. https://enterprise.verizon.
com/resources/reports/2020-data-breach-investigations-report.pdf

[42] Colin Whittaker, Brian Ryner, and Marria Nazif. 2010. Large-Scale Automatic
Classification of Phishing Pages. In Network and Distributed System Security
Symposium. Internet Society.

[43] Jonathan Woodbridge, Hyrum S. Anderson, Anjum Ahuja, and Daniel Grant.
2016. Predicting Domain Generation Algorithms with Long Short-Term Memory
Networks. arXiv:1611.00791.

[44] x0rz. 2020. Phishing Catcher. https://github.com/x0rz/phishing_catcher online,
accessed 2021-01-06.

[45] Peilin Zhao and Steven C.H. Hoi. 2013. Cost-Sensitive Online Active Learning
with Application to Malicious URL Detection. In International Conference on
Knowledge Discovery and Data Mining. ACM.

A APPENDIX
In Table 2, we present the full list of words we used for keyword-
features.

Table 2: Full list of words used for keyword-features.

secure login mail account online
support sites services service docs
update signin info security help
verify recovery mobile secureserver storage
center verification auth promo free
paypal runescape google apple jppost

sharepoint sagawa appleid amazon icloud
windows office facebook 1drv live
onedrive ebay allegro itau bankofamerica

cartetitolari viabcp

Table 3 depicts extracted certificate and domain feature values
for two example certificates, a benign and a phishing certificate.
Additionally, we mark the features we selected during our feature
selection process (Section 4.2).

https://support.apple.com/en-us/HT205280
https://support.apple.com/en-us/HT205280
https://docs.apwg.org/reports/
https://censys.io/
https://censys.io/
https://chromium.github.io/ct-policy/ct_policy.html
https://chromium.github.io/ct-policy/ct_policy.html
https://umbrella.cisco.com/blog/cisco-umbrella-1-million
https://umbrella.cisco.com/blog/cisco-umbrella-1-million
https://tools.ietf.org/html/rfc3912
https://gitlab.com/rwth-itsec/ctl-pipeline
https://safebrowsing.google.com/
https://www.ic3.gov/Media/PDF/AnnualReport/2019_IC3Report.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2019_IC3Report.pdf
https://tools.ietf.org/html/rfc6962
https://letsencrypt.org/docs/ct-logs/
https://letsencrypt.org/docs/ct-logs/
https://tools.ietf.org/html/rfc1035
https://openphish.com/
https://www.openssl.org/
https://phishstats.info/
https://www.phishtank.com/
https://www.phishtank.com/
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
https://github.com/x0rz/phishing_catcher

ARES 2021, August 17–20, 2021, Vienna, Austria Drichel and Drury, et al.

Table 3: Extracted certificate and domain features values for a benign (c0) and a phishing certificate (c1). A feature is defined
as a function F of a sample c. Domain features are extracted from common names (CNs). CN c0 = anycast.ftl.netflix.com,
CN c1 = paypal-secured.ga. Features selected during feature selection are marked. Categorical features: issuer, key_algorithm

Feature Selected Type Output F(c0) F(c1)

1 is_ov certificate binary 1 0
2 is_ev ✓ certificate binary 0 0
3 is_dv certificate binary 0 1
4 sub_has_c certificate binary 1 0
5 sub_has_st certificate binary 1 0
6 sub_has_l certificate binary 1 0
7 sub_only_cn ✓ certificate binary 0 1
8 sub_has_cn certificate binary 1 1
9 sub_dn_count certificate integer 6 1
10 sub_char_count ✓ certificate integer 64 17
11 sub_ext_count certificate integer 10 9
12 valid_period ✓ certificate integer 36 90
13 policies_count certificate integer 2 2
14 is_wildcard certificate binary 1 0
15 has_ocsp certificate binary 1 1
16 has_cdp ✓ certificate binary 1 0
17 san_count ✓ certificate integer 7 2
18 average_sd_count ✓ certificate rational 4.14286 2.50000
19 san_tld_count ✓ certificate integer 2 1
20 key_algorithm certificate integer 2 1
21 key_size certificate integer 256 2048
22 issuer ✓ certificate integer 0 1
23 sub_cn_entropy ✓ domain rational 2.54753 2.47625
24 sub_cn_is_com ✓ domain binary 1 0
25 name_san_entropy ✓ domain rational 0.24027 0.08737
26 has_uppercase_letters domain binary 0 0
27 num_dash ✓ domain integer 0 1
28 num_dash_rd ✓ domain integer 0 1
29 num_tokens ✓ domain integer 4 3
30 tld_in_token ✓ domain binary 1 0
31 https_in_domain domain binary 0 0
32 longest_token ✓ domain integer 7 7
33 special_char_ratio ✓ domain rational 0.13043 0.11765
34 is_ip domain binary 0 0
35 is_idn_domain ✓ domain binary 0 0
36 san_to_alexa_entropy ✓ domain rational 0.57761 0.74982
37 vowel_ratio ✓ domain rational 0.23529 0.38462
38 digit_ratio ✓ domain rational 0.00000 0.00000
39 length ✓ domain integer 23 17
40 contains_wwwdot ✓ domain binary 0 0
41 contains_subdomain_of_only_digits domain binary 0 0
42 subdomain_lengths_mean ✓ domain rational 5.66667 14.00000
43 parts ✓ domain integer 3 1
44 contains_digits ✓ domain binary 0 0
45 has_valid_tld domain binary 1 1
46 contains_one_char_subdomains ✓ domain binary 0 0
47 prefix_repetition domain binary 0 0
48 char_diversity ✓ domain rational 0.64706 0.78571
49 contains_tld_as_infix ✓ domain binary 1 0
50 alphabet_size ✓ domain integer 11 11
51 shannon_entropy ✓ domain rational 3.33718 3.37878
52 hex_part_ratio ✓ domain rational 0.00000 0.00000
53 underscore_ratio domain rational 0.00000 0.00000
54 ratio_of_repeated_chars ✓ domain rational 0.45455 0.27273
55 consecutive_consonant_ratio ✓ domain rational 0.64706 0.14286
56 consecutive_digits_ratio ✓ domain rational 0.00000 0.00000
57 1_gram_std ✓ domain rational 0.65555 0.44536
58 1_gram_median ✓ domain integer 1 1
59 1_gram_mean ✓ domain rational 1.54545 1.27273
60 1_gram_min domain integer 1 1
61 1_gram_max ✓ domain integer 3 2
62 1_gram_bottom_quartile ✓ domain rational 1.00000 1.00000
63 1_gram_top_quartile ✓ domain rational 2.00000 1.50000
64 2_gram_std ✓ domain rational 0.24944 0.27639
65 2_gram_median domain integer 1 1
66 2_gram_mean ✓ domain rational 1.06667 1.08333
67 2_gram_min domain integer 1 1
68 2_gram_max ✓ domain integer 2 2
69 2_gram_bottom_quartile domain rational 1.00000 1.00000
70 2_gram_top_quartile ✓ domain rational 1.00000 1.00000
71 3_gram_std ✓ domain rational 0.00000 0.00000
72 3_gram_median domain integer 1 1
73 3_gram_mean ✓ domain rational 1.00000 1.00000
74 3_gram_min domain integer 1 1
75 3_gram_max ✓ domain integer 1 1
76 3_gram_bottom_quartile domain rational 1.00000 1.00000
77 3_gram_top_quartile ✓ domain rational 1.00000 1.00000

	Abstract
	1 Introduction
	2 Related Work
	3 Detection Pipeline
	3.1 Design Goals
	3.2 Pipeline Overview

	4 Novel & Existing Classifiers
	4.1 Classifying Domains
	4.2 Feature Engineering & Selection
	4.3 Random Forest based Classifiers
	4.4 Deep Learning based Classifiers
	4.5 Classifying All Domains at Once
	4.6 State-of-the-Art Classifiers of Related Work

	5 Evaluation
	5.1 Classifier Evaluation
	5.2 Pipeline Evaluation

	6 Discussion & Future Work
	7 Conclusion
	Acknowledgments
	References
	A Appendix

