First Step Towards EXPLAINable DGA Multiclass Classification

Arthur Drichel Nils Faerber Ulrike Meyer
drichel@itsec.rwth-aachen.de nils.faerber@rwth-aachen.de meyer@itsec.rwth-aachen.de
RWTH Aachen University RWTH Aachen University RWTH Aachen University
ABSTRACT aware of the generation scheme and thus able to register a small

Numerous malware families rely on domain generation algorithms
(DGAS) to establish a connection to their command and control (C2)
server. Counteracting DGAs, several machine learning classifiers
have been proposed enabling the identification of the DGA that
generated a specific domain name and thus triggering targeted
remediation measures. However, the proposed state-of-the-art clas-
sifiers are based on deep learning models. The black box nature of
these makes it difficult to evaluate their reasoning. The resulting
lack of confidence makes the utilization of such models imprac-
ticable. In this paper, we propose EXPLAIN, a feature-based and
contextless DGA multiclass classifier. We comparatively evaluate
several combinations of feature sets and hyperparameters for our
approach against several state-of-the-art classifiers in a unified
setting on the same real-world data. Our classifier achieves com-
petitive results, is real-time capable, and its predictions are easier
to trace back to features than the predictions made by the DGA
multiclass classifiers proposed in related work.

CCS CONCEPTS

« Security and privacy — Intrusion/anomaly detection and mal-
ware mitigation; « Computing methodologies — Machine learn-
ing; Artificial intelligence.

KEYWORDS

Intrusion detection, domain generation algorithm (DGA) detection,
XAI (eXplainable Artificial Intelligence), machine learning

ACM Reference Format:

Arthur Drichel, Nils Faerber, and Ulrike Meyer. 2021. First Step Towards
EXPLAINable DGA Multiclass Classification. In The 16th International
Conference on Availability, Reliability and Security (ARES 2021), August
17-20, 2021, Vienna, Austria. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3465481.3465749

1 INTRODUCTION

Modern botnets rely on domain generation algorithms (DGAs) in
order to enable the communication between the botnet herder and
malware infected devices. In contrast to the usage of single fixed
IP-addresses or fixed domain names, the communication of DGA-
based malware is harder to block as they generate a vast amount of
algorithmically generated domains (AGDs). The botnet herder is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ARES 2021, August 17-20, 2021, Vienna, Austria

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9051-4/21/08...$15.00
https://doi.org/10.1145/3465481.3465749

subset of the generated domains in advance. The bots query all
AGDs, one-by-one, trying to obtain the valid IP-address of their
command and control (C2) server. Most of these queries result in
non-existent domain (NXD) responses since the major fraction
of the AGDs is not registered. Through an analysis of occurring
NXDs within a network it is possible to detect DGA activities and
thereby to take appropriate countermeasures even before the bots
are commanded to partake in any malicious action. However, the
detection of malicious AGDs is not trivial as NXDs can also be the
product of typing errors, misconfigured or outdated software, or
the intentional misuse of the DNS e.g. by antivirus software. We
refer to the task of separating benign from malicious domain names
as the DGA binary classification task. Going one step further, it is
desirable to not only detect malicious AGDs but to attribute them to
the specific DGAs that generated the domain names. This multiclass
classification task narrows down the malware family and ultimately
enables the execution of targeted remediation measures. The DGA
multiclass classification task is far more complex as the classifier
has to cope with an increased number of classes compared to the
two classes in binary classification. For instance, the open-source
threat intelligence feed of DGArchive [21] contains approximately
115 million unique ADGs generated by 92 different DGAs.

In the past, a multitude of different approaches have been pro-
posed in order to detect DGAs which can broadly be grouped into
context-aware and contextless approaches. The context-aware ap-
proaches (e.g. [1, 4, 10, 23, 30]) make use of additional contextual
information next to the domain name that is to be classified try-
ing to enhance the classification performance. On the other side,
contextless approaches (e.g. [6, 22, 24, 29, 31]) entirely rely on in-
formation extracted from a single domain name for classification
and are thus less resource intensive and less privacy invasive. Prior
studies (e.g. [6, 24, 29, 31]) have shown that the contextless ap-
proaches are able to achieve state-of-the-art performance while not
depending on the extensive tracking of DNS traffic.

The proposed contextless machine learning classifiers can further
be separated into feature-based, such as support vector machines
(SVMs) or random forests (RFs) (e.g. [24]), and deep learning based
approaches, such as recurrent (RNNs), convolutional (CNNs), or
residual neural networks (ResNets) (e.g. [6, 22, 29, 31]). For the
multiclass task, however, only deep learning based contextless clas-
sifiers are available to date. While these classifiers achieve a very
promising performance, deep learning classifier are often said to
lead to less well explainable predictions compared to feature-based
classifiers.

We intend this work to be a first step towards explainable DGA
multiclass classification. Ultimately, this requires a focused com-
parison of different approaches to DGA multiclass classification
with respect to explainability. To this end, competitively perform-
ing feature-based and deep learning based approaches have to be

https://doi.org/10.1145/3465481.3465749
https://doi.org/10.1145/3465481.3465749
https://doi.org/10.1145/3465481.3465749

ARES 2021, August 17-20, 2021, Vienna, Austria

contrasted. However, to the best of our knowledge, there currently
is no feature-based multiclass classifier and the ones that can easily
be constructed from existing binary classifiers (see Section 2.2) do
not exhibit competitive performance (see Section 5.1). We thus,
first focus on developing a feature-based multiclass classifier that
achieves a classification performance comparable to previously pro-
posed deep learning classifiers. We describe the engineering of our
classifier in detail for the sake of transparency, which is a major
requirement for explainability. Without a transparent feature en-
gineering and selection process a feature-based classifier operates
similar to a black box.

In this paper, we make the following contributions:

First, we propose EXPLAIN and publish the source code along
with this paper.! To the best of our knowledge, this is the first con-
textless and feature-based machine learning classifier for DGA mul-
ticlass classification. The main target user groups for our classifier
are security operation center (SOC) analysts and model developers.
SOC analysts potentially benefit from the use of EXPLAIN over
deep learning approaches when analyzing predictions in search for
potential false positives or false negatives. Here, EXPLAIN enables
analyzing the features that contributed to the classification result.
Model developers, on the other hand, heavily profit from the adapt-
ability of our approach. For instance, features can be adjusted or
new discriminating features can be engineered in order to enable
the correct attribution of newly discovered DGAs.

In addition to presenting EXPLAIN itself, we also present the
methodology we used for engineering this classifier. Thereby, we
provide a methodical description which covers the complex process
of feature engineering, feature selection, and hyperparameter op-
timization. This methodology can be used to create feature-based
classifiers using domain knowledge for different areas of applica-
tion. Note that related work on feature-based machine learning
classifiers for DGA detection such as [1, 24] fall short in providing
such methodology. There, only the utilized features are presented
without stating whether and how feature selection and hyperpa-
rameter optimization were performed. This not only renders the
decisions made by the authors incomprehensible but also hinders
the reuse of the methodology which might be of help also for dif-
ferent areas of application.

Second, we extensively compare our proposed classifier with
state-of-the-art deep learning based approaches. Here, we demon-
strate that our classifier is able to achieve results competitive to the
currently best performing deep learning classifiers.

2 RELATED WORK

In the following, we first present related work which focuses on
feature-based machine learning approaches for DGA detection as
well as on contextless deep learning based classifiers. Afterwards we
discuss which of the state-of-the-art classifiers we selected for our
comparative evaluation and explain any modification we applied
to the classifiers to enable a fair comparison.

2.1 DGA Detection Classifiers

FANCI. Schiippen et al. [24] proposed a system called Feature-
based Automated NXDomain Classification and Intelligence (FANCI)

Ihttps://gitlab.com/rwth-itsec/explain

Drichel et al.

which is capable of separating benign from malicious domain names.
For solving the DGA binary classification task FANCI implements
an SVM and an RF-based classifier and makes use of 12 structural,
7 linguistic, and 22 statistical features.? The in total 41 features are
extracted solely from the domain name which is to be classified and
thus FANCI works completely contextless. FANCI does not support
DGA multiclass classification.

Pleiades. Antonakakis et al. [1] presented Pleiades, a system
which is able to detect machines within a monitored network that
are compromised with DGA-based malware. First, unsupervised
clustering is used in order to group similar domains of multiple
machines within the monitored network. Second, using supervised
learning of alternating decision trees a set of NXDs for a given host
is labeled to a specific cluster that represents a DGA. Lastly, for
each of these clusters a Hidden Markov Model is trained and used
for finding single active domain names which are likely to be C2
domains of a particular DGA.

M-Endgame. Woodbridge et al. [29] propose two RNN-based
classifiers, one for DGA binary detection and one for the DGA
multiclass classification task. Both classifiers consist of an embed-
ding layer, a long short-term memory (LSTM) [14] layer containing
128 hidden cells with hyperbolic tangent activation, and a final
output layer. In case of binary classification, the final output layer
incorporates a single neuron with sigmoid activation which yields
a confidence score between zero and one for every input domain.
For multiclass classification, the final output layer includes as many
neurons as DGA families are included during the training of the
classifier. Using the softmax activation function it is determined
whether the domain is benign or, in the case of a malicious domain,
which DGA is most likely to have generated the domain. We refer to
the multiclass classification model as M-Endgame in the following.

M-Endgame.MI. Woodbridge et al. [29] identified that their pro-
posed M-Endgame model is prone to class imbalances which limit
the correct attribution of domains from weakly represented DGAs.
The authors tried to cope with this issue by clustering the 30 inves-
tigated DGAs into eleven super families. While this increased the
averaged classification performance, it removes the possibility of
targeted remediation measures. Tran et al. [27] addressed this issue
by introducing class weights C; for every class i which control the
extent of the weight updates during the training of the M-Endgame
model. By weighting the loss function, misclassified samples of
class i are penalized with a factor of C; instead of 1. A greater C;
thus forces the classifier to emphasize more on the class i. The
proposed class weights by Tran et al. are defined as follows:

total number of samples

Y
' (number of samples in class i)

The parameter y regulates the magnitude of the rebalancing which
isto be applied. When y = 0 is set, the model behaves cost-insensitive.
Setting y = 1 causes the classifier to treat every class equally re-
gardless of how many training samples per class are available. Tran
et al. evaluated their approach against RUSBoost [25] which was

2FANCI uses 21 features, but feature #20 is a vector of 21 values, resulting in 41 values
in total.

First Step Towards EXPLAINable DGA Multiclass Classification

shown in [9] to be one of the best performing and least complex
approaches in order to cope with class imbalances compared to
several bagging-, boosting-, and hybrid-based approaches. They
empirically determined y = 0.3 to work well for M-Endgame and for
the DGA multiclass classification task and demonstrated that their
approach achieves better results than RUSBoost. In the following,
we refer to the adapted cost-sensitive model as M-Endgame ML

NYU. Zhang et al. [32] proposed a CNN-based classifier based on
six stacked 1-dimensional convolutional layers for different natural
language text classification tasks. While this model was success-
fully applied to full-fledged natural texts such as news articles or
reviews, the model tends to overfit domain names due to their typi-
cal small length and missing grammatics. Thus, for the DGA binary
classification task, Yu et al. [31] adapted the model by reducing the
total amount of convolutional layers to two and the number of their
filters to 128.

eXpose. Saxe and Berlin [22] proposed eXpose, a CNN-based
classifier for detecting malicious URLs, file paths and registry keys.
The main difference of this model compared to NYU lies in the usage
of the CNN layers. While the NYU model makes use of two stacked
CNN layers, the eXpose model uses four parallel CNN layers. This
model was successfully applied to DGA binary classification in [31].

M-ResNet. Drichel et al. [6] proposed a binary and a multiclass
DGA classifier based on ResNets. ResNets introduce skip connec-
tions between convolutional layers which build up residual blocks
and allow the gradient to bypass layers unchanged during the train-
ing of a classifier. Thereby, the vanishing gradient problem can be
mitigated. For the binary classification task, the authors propose a
classifier consisting of a single residual block with 128 filters per
convolutional layer. The proposed multiclass classifier M-ResNet
possesses a more complex architecture of eleven residual blocks
and 256 filters per layer.

2.2 Selected State-of-the-Art Classifiers

In this section, we provide the rationales behind our choice of state-
of-the-art classifiers to comparatively evaluate against. We selected
several approaches in order to cover different types of machine
learning techniques, i.e. feature-, RNN-, CNN-, and ResNet-based
approaches. Moreover, we explain every modification we did in
order to enable a fair comparative evaluation.

For a feature-based approach, we adapted FANCI with its orig-
inal features developed for the binary task to a multiclass clas-
sifier. While the RF-based implementation is inherently capable
of multiclass classification, the SVM approach requires modifica-
tions. By reducing the problem of multiclass classification to mul-
tiple binary classification problems it is possible to enable mul-
ticlass classification support for the SVM implementation. Here,
we either use multiple one-vs.-one (OvO) or one-vs.-rest (OVR)
classifiers. We refer to the multiclass enabled SVM approaches as
M-FANCI-SVM-OvO and M-FANCI-SVM-OvR in the following.
Additionally to the multiclass enabled M-FANCI-RF model we
also evaluate M-FANCI-RF-OvO and M-FANCI-RF-OvR.

We do not evaluate Pleiades as it heavily depends on extensive
tracking of DNS traffic which is required in order to correlate in-
formation of groups of DNS queries or responses. Moreover, the

ARES 2021, August 17-20, 2021, Vienna, Austria

proposed DGA multiclass classifier requires a set of NXDs from a
single host as input because it is not able to reliably extract features
from a single domain name [1].

For deep learning based approaches, we chose M-Endgame
(RNN-based) and M-ResNet (ResNet-based). Further, we adapted
the NYU classifier (CNN-based) to a multiclass model (M-NYU) by
exchanging the last output layer similar to the M-Endgame model as
proposed in [6]. Another representative for a CNN-based approach
is eXpose. We decided to evaluate the NYU model instead of eXpose
in more detail, as prior evaluations [31] suggest that there is only
little difference in terms of accuracy between these models but the
NYU model is faster to train and needs less time for classification.

Finally, we also include cost-sensitive models as proposed by
Tran et al. [27]. In [7] it was shown that besides the M-Endgame
model also other neural network classifiers benefit from class weight-
ing. We thus include for every chosen deep learning based classifier
also a cost-sensitive variant for our evaluation. We denote the cost-
sensitive models by an ending .MI in the following.

3 EVALUATION OVERVIEW

In this section, we provide an overview of the used data sets as
well as our experimental setup which includes our used evaluation
methodology.

3.1 Data Sets

First, we describe our used data sources and subsequently we ex-
plain how we created two distinct data sets, one for feature engi-
neering and selection (Setgeection)> and one for the final compara-
tive evaluation (Setgyaluation)- We obtain domain names from two
separate sources, one for malicious and one for benign samples.

3.1.1 Malicious Data: DGArchive. We use the open-source threat
intelligence feed of DGArchive [21] as source for malicious domain
names. DGArchive contains domains generated by reimplemen-
tations of DGAs and known seeds. For our evaluation, we use all
available samples up to January 1%, 2020. Overall DGArchive pro-
vides us with approximately 115 million unique domains generated
by 92 different DGAs.

3.1.2 Benign Data: University Network. We obtain benign NXDs
from the central DNS resolver of the campus network of RWTH
Aachen University. This network assimilates several academic and
administrative networks, student residences’ networks, networks
from a university hospital, and eduroam [8]. We captured a one-
month recording of September 2019 from this network that includes
approximately 26 million unique NXDs.

3.1.3 Data Set Creation. Before creating any data set, we perform
a simple data sanitization step in which we convert all domains to
lower case and remove all duplicates as well as invalid domains
(according to [18]). Casting the domain names to lower case eases
the training of the deep learning based classifiers as they operate
on character-level. This data sanitization has no impact on the
classification or the name resolution of the DNS as it operates case-
insensitive. Moreover, invalid domains can be removed as their
name resolution would fail anyways. Finally, we filter our benign
labeled domain names against all samples of DGArchive and remove
all known malicious AGDs to clean our data as far as possible. In

ARES 2021, August 17-20, 2021, Vienna, Austria

order to obtain meaningful results for our feature engineering,
feature selection, as well as for the comparative evaluation, we
require that for every included DGA at least 10 unique samples
are available. We thus eliminate the samples of Dnsbenchmark and
Randomloader, for which only 5 samples per DGA family are known,
from our data.

Since we aim for diverse data sets, we randomly draw for every
remaining DGA in DGArchive at most 20,000 samples. We take
all available domain names for DGAs for which less than 20,000
samples are known. Additionally, we draw 20,000 random samples
from our source for benign data. Thereafter, we split the selected
data evenly across all class labels into two disjoint data sets. The
first set, Setgelection, 1S used in the context of feature engineering
and selection during the development of our proposed classifier.
The second set, Setgyaluations 1S 0nly used for the final comparative
evaluation. Each of these data sets comprises approximately 500,000
samples of 91 different classes including the benign class.

3.2 Experimental Setup

We use the following software packages for our experiments: Python
3.8.5, scikit-learn 0.23.2, TensorFlow 2.3.0, Keras 2.4.0, CUDA 10.1,
and cuDNN 7.6.5. All deep learning models are executed on a
NVIDIA Tesla V100 GPU while the feature-based approaches are
executed on 48 CPU cores of two Intel Xeon Platinum 8160 proces-
sors@2.1GHz.

Our evaluation is split into two parts (Section 4 and Section 5).

In Section 4, we present evaluations conducted during the de-
velopment of our classifier. We make use of samples included in
Setselection 1Nt Order to engineer and select well performing feature
sets. Here, we additionally perform the hyperparameter optimiza-
tion. The results of the evaluations performed in this section are
several promising combinations of feature sets and hyperparame-
ters (configurations) which will be analyzed subsequently.

In Section 5, we compare our best performing classifier config-
urations with the various state-of-the-art classifiers proposed in
related work using the samples included in Setgyalyation- Addition-
ally, we measure the classifiers’ training and classification speed in
order to assess their real-time capability.

For every evaluation we present in this paper, we perform five
repetitions of a five-fold cross validation stratified over the included
classes within the respective set. Thus, in every fold, the samples of
each class are split into 80% training and 20% testing samples. For the
deep learning classifiers we additionally split 5% from the training
samples for a holdout set which is used to assess the performance
of the classifiers during training. We train all deep learning models
as long as they are improving on the holdout set. After five epochs
without improvement we stop the training and evaluate the best
model on the test samples.

In order to evaluate and compare the different classifiers we
primarily use the f1-score which is defined as the harmonic mean
of the precision and the recall. The precision measures the fraction
of true positives among those samples that are labeled as positive
by a classifier. The recall, on the other hand, equals the true positive
rate and thus measures the proportion of positives that are correctly
identified by a classifier. We calculate these metrics for every class
included in our evaluation and afterwards average all class scores to

Drichel et al.

assess the overall performance of a classifier. By using this macro-
averaging we value each class with the same level of importance
despite the actual number of available samples per class varying.

4 EXPLAIN

The engineering of features requires much more effort compared
to the usage of deep learning classifiers where all important infor-
mation has simply to be encoded and provided to the model, then
the model learns the relevant features on its own in an end-to-end
fashion. Moreover, after the feature engineering the best combi-
nation of features has to be selected. The combination of several
engineered features might contain mutual information which could
render single features useless for the classification. These features
should be removed as their extraction from the raw data might
require significant processing time which could have a negative
impact on the real-time capability of a classifier. For performing the
complex process of feature selection a multitude of feature filtering
and ranking techniques (e.g. [5, 13, 15-17, 28]) have been suggested
in the past. Lastly, in the development process of a feature-based
classifier a huge amount of hyperparameters has to be optimized.
All in all, for a promising feature-based classifier these three steps
(i.e. feature engineering, feature selection, and hyperparameter
optimization) have to be performed which is not a trivial task.

During the development of EXPLAIN we investigated RFs and
SVMs. In our experiments, our RF variants outperformed our SVM
approaches in training time as well as in classification performance.
We thus focus on the development of a RF-based implementation
of a feature-based multiclass DGA classifier in the following.

4.1 Feature Engineering & Selection

In this work, we study 136 different features which we gathered or
adapted from related work (mainly from [1, 21, 23, 24]) and devel-
oped by our own through analyzing the samples of the different
DGAs and benign samples contained in Setgejection- ASs We target
a contextless classifier due to privacy considerations we only fo-
cus on features that can be extracted from a single domain name.
We divide the 136 features into 64 linguistic, 17 structural, and 55
statistical features. Note, we only use samples from Setgelection fOr
feature engineering and selection. The final comparative evaluation
will be performed on samples from the disjunctive set Setgyaluation-

We provide a list of the developed features including their total
amount and a brief description of their purpose in Table 1. For
instance, simple features attempt to distinguish DGA families based
on the suffixes used in their generated domains because different
families use different sets of suffixes. Other features try to sepa-
rate DGA families based on character distributions as, for example,
wordlist-based families do have different consonant and vowel
distribution in contrast to arithmetic- and hex-based families. Ad-
ditionally, we introduce novel features to discriminate different
underlying pseudo-random number generators used by the DGA
families for domain generation. A detailed description for each
individual feature can be found in the source code.

After feature engineering we perform feature selection to reduce
the computational complexity for training and classification of our
classifier and to enhance its overall classification performance. A
variety of different feature selection methods have been proposed

First Step Towards EXPLAINable DGA Multiclass Classification

ARES 2021, August 17-20, 2021, Vienna, Austria

Table 1: Newly Developed Features

Feature # Type Goal/Purpose

subdomains-digit-sum 1 linguistic distinguish families with different character distributions

{...}-character-ratio 4 linguistic distinguish families with different character distributions

alphabet-{...} 37 linguistic distinguish families with different character distributions and alphabets
adjacent-duplicates-ratio 1 linguistic distinguish arithmetic- and wordlist-based families from hex-based families
{...}-max-streak-length 6 linguistic distinguish arithmetic-, hex- and wordlist-based families

first-character-pair 1 linguistic detect families with constant prefixes (e.g. Xxhex with “xx”)

syllable-count 1 linguistic distinguish families with different levels of readability in their AGDs

weighted-steaks 1 linguistic distinguish same length domains with different positioning and quantity of consonants and decimal digits
inverse-hamming-distance 1 linguistic for randomness assessment

{...}-digit-edge-distance 2 linguistic detect domains with digits at constant relative positions and for randomness assessment
suffix-digit-sum 1 linguistic distinguish families with different sets of utilized suffixes

suffix-standard-deviation 1 linguistic distinguish families with different sets of utilized suffixes

suffix-length 1 structural distinguish families with different sets of utilized suffixes

suffix-dns-level 1 structural distinguish families with different sets of utilized suffixes

second-level-length 1 structural detect families using fixed lengths for their subdomains

subdomains-length 1 structural detect families using fixed lengths for their subdomains

second-level-repeated-prefix 1 structural detect domains originating from misconfigured software

subdomains-contain-suffix 1 structural detect domains originating from misconfigured software and typing errors

{1, 2, 3}-gram-{...} 15 statistical ~distinguish families with different character distributions and for randomness assessment
zlib-bits-compression-ratio 1 statistical ~distinguish families with different character distributions and for randomness assessment
bits-entropy 1 statistical distinguish families with different character distributions and for randomness assessment
{...}-test[-unicode] 14 statistical ~ distinguish different underlying pseudo-random number generators

in the past, all having their advantages and disadvantages. In this
work, we thus make use of different filter and wrapper methods to
determine valuable features as there is no best technique.

Filtering methods leverage proxy measures to assess the impor-
tance of features. The main advantage of filter methods are that
they are computationally lightweight, scalable, and independent
of the underlying learning algorithm. Common measures are the
variance, mutual information, chi-square test, ANOVA F-test, and
Relief-based algorithms [15].

The variance as well as the mutual information of a variable
with a target label can be used as a proxy to measure the amount
of information of a feature. Features that contain little information
can be filtered out because they contribute only insignificantly to
the classification.

The chi-square test measures the dependence between a non-
negative categorical feature and the target label which can thus be
used to remove features that are independent of a class and therefore
irrelevant for the classification. In case of numerical features the
ANOVA F-test should be used instead. As we intent to utilize a mix
of different categorical and numerical features we do not make use
of these filtering techniques.

Relief-based algorithms [15] compute an importance score for
every feature based on differences in feature values of nearest
neighbor instance pairs. The advantages of Relief-based algorithms
is that they run in low-order polynomial time, are not sensitive to
feature interactions, and are robust against noise. However, their
weaknesses are that they do not discriminate redundant features
and that they might be fooled by low numbers of training instances.
ReliefF [16] is the most commonly used Relief-based algorithm [28].
Another efficient Relief-based algorithm is MultiSURF [28]. It can
be used for the sake of simplicity or when computing resources are
limited, since there are no execution parameters to be optimized.

For our feature selection, we utilize ReliefF and MultiSURF to select
the better than average features according to their computed feature
importances.

Wrapper methods are, in contrast to filter methods, more compu-
tationally intensive as they are not independent of the underlying
learning algorithm. For each feature subset a new model is trained
and evaluated which allows for finding the best performing feature
set for a particular model and evaluation set.

A commonly used wrapper method is recursive feature elimina-
tion (RFE) [13]. RFE recursively estimates the feature importances
based on a feature ranking method and removes beginning from
the whole feature set the least important feature. In each iteration
of RFE the classification performance of the current feature set is
estimated using a hold-out set. Thus, using RFE it is possible to
determine the best feature set for a given model and evaluation set.
In this work, we use the cross-validated variant of RFE included in
scikit-learn [20] using the Mean Decrease Impurity (MDI) [17] and
the Permutation Importance (PI) [5] as feature ranking methods.

MDI measures for every feature the average gain of purity by
splits using the corresponding feature within the trees in the forest.
The advantage of MDI is that once the model is trained the MDI for
each feature can be calculated without the need of further model
executions (e.g. evaluating a hold-out set). However, this property
is at the same time a weakness of MDI as the feature importances
are only derived from statistics of the training data set and thus
this measure does not indicate which features would be most im-
portant for good predictions on a hold-out set. Further, MDI might
overestimate the importances of high cardinality features.

PI, on the other hand, does not suffer from these issues. After a
model is trained, the PI can be measured for every feature by calcu-
lating the increase of the model’s prediction error after permuting
the feature values included in a validation set. If the model error

ARES 2021, August 17-20, 2021, Vienna, Austria

Drichel et al.

Table 2: Feature Selection Analysis

. . Training Ti i i i
Feature Set # Fl-score Precision Recall r‘gi;‘:s%ﬁelrme [s] [Eeature };’;;‘;cltemn Time /4] I“fegzll:;l;r‘me [ps]
RFE-MDI 52 0.74290 0.78390 0.73592 195 156 17
RFE-PI 28 0.75504 0.78528 0.74934 100 106 16
ReliefF 41 0.71707 0.74192 0.71267 184 198 18
MultiSURF 59 0.72946 0.77833 0.72353 192 241 17
All features 136 0.72806 0.77131 0.72114 320 695 17
Intersection 11 0.64527 0.67936 0.64778 27 85 16
Union 76 0.73352 0.77842 0.72662 264 276 17
Union-Spearman 64 0.74654 0.79204 0.73836 225 239 17

increases (compared to the model error measured on the validation
set containing the unshuffled feature values), the feature is impor-
tant as the model uses it for correct predictions. The feature is not
important if the model error stays unchanged as the model does
not rely on the corresponding feature for classification.

To select valuable features, we make use of RFE with MDI as
well as RFE with PL

Results. For our feature selection, we first exclude ill-defined
features with zero variance or zero mutual information with the
target label since they do not contain any information that a classi-
fier could use to distinguish samples. Thereby we remove three of
the 136 investigated features. Thereafter, we derive four different
feature sets using an RF classifier with default hyperparameters (set
by scikit-learn [20]) and the previously introduced feature selection
methods: ReliefF, MultiSURF, RFE-MDI, and RFE-PIL

As there is no best feature selection method, we additionally
combine all sets into an Intersection set (by calculating the inter-
section of all sets) and a Union set (by taking the union of all sets).
Additionally, we remove multicollinear features within the Union
set. Removing such features could improve the classifier’s training
and classification time without decreasing its classification perfor-
mance since the classifier can obtain the same information from
correlating features. The removal of such features thus reduces the
computational burden of a classifier. In order to achieve this, we
perform hierarchical clustering on the features’ Spearman rank-
order correlation coefficients [26], where the coefficients measure
the monotonicity of the relationships between different features.

We provide a heatmap of correlating features contained in the
Union set in Fig. 2 in the Appendix. The darker a cell within the
figure, the more the features, which are depicted on the x- and
y-axis, correlate positively. It can be seen, that while the features in
the left upper part of the heatmap are less correlated to each other,
features within the right lower part build several clusters.

In order to remove the correlating features we calculate a cut-off
threshold targeting the preferred number of remaining clusters. For
better understanding, we provide the corresponding dendrogram in
Fig. 2 on top of the heatmap including the plot of the cut-off thresh-
old. The y-axis is a measure of closeness of the different clusters.
In our case the calculated threshold equals approximately 0.39. The
features which are clustered under the threshold line are collapsed
by choosing the feature with the highest MDI. Through this process
we generate the additional feature set Union-Spearman.

The upper part of Table 2 displays the amount of selected fea-
tures per individual selection method as well as evaluation results
obtained by classifying the samples of Setgelection. In the lower
part, we additionally include results of the different feature set
combinations as well as an evaluation using all 136 features for
comparison.

The best evaluation results on Setgejection are achieved with RFE-
PI (f1-score of 75.504%). This is remarkable since only 28 of the 136
features are used. The only feature set which contains less features
is the Intersection set with eleven features in total. However, the f1-
score for this set is with 64.527% the worst. The training and feature
extraction speed is the best for RFE-PI when the Intersection set is
ignored. All feature selections, except for ReliefF and Intersection,
improve the classification performance compared to the classifier
that uses all features. The removal of twelve multicollinear features
contained in the Union set (yielding Union-Spearman) increases the
f1-score by more than 1%. The required inference time per sample
does not vary much between all feature sets.

Since it cannot be ruled out that some feature sets might perform
well on the utilized data set due to overfitting, we consider for our
further development the best individual feature set (RFE-PI) as well
as the Union and Union-Spearman feature set combinations. We
thus perform individual hyperparameter optimizations for all of
these three feature selections.

4.2 Selected Features

Here, we only present the features we have selected. The full list
of investigated features as well as a description for each individual
feature can be found in the publicly available source code.

All selected features can be separated into three different groups:
linguistic, structural, and statistical features. The first category of
features analyze the presence or absence of common linguistic
patterns. For instance, features of this category evaluate whether a
domain name contains digits or compute the vowel ratio. Structural
features, on the other hand, investigate structural properties of a
domain name such as the domain length. The last category contains
features which capture statistical properties such as the frequency
distribution of certain n-grams or the entropy.

In Table 5 in the Appendix, we provide an overview of all features
selected by the different selection methods. For every feature, we
mark the membership to a corresponding feature set and present
extracted feature values for two sample domains, dy and di. We

First Step Towards EXPLAINable DGA Multiclass Classification

define a feature as a function ¥ of a sample d. Thus # (d) denotes
the extracted feature. In our example, dy = iee-security.org repre-
sents a benign NXD caused by a typing error of ieee-security.org
while di = mwkwhvkdpp.info is a malicious NXD generated by the
Conficker DGA.

Note, 60 out of the 76 features from the Union set are newly de-
veloped indicating the need of new features for the DGA multiclass
classification task. In Section 5.1, we assess our selected feature
sets against the features proposed in related work by performing
a comparative evaluation including the feature-based approach
FANCI [24].

4.3 Hyperparameter Optimization

The exhaustive grid search is one of the most used hyperparameter
optimization strategy[3]. It generates candidates from a grid of pa-
rameter values and evaluates each in order to determine the optimal
hyperparameters. As every possible hyperparameter combination
for the defined values is evaluated, this brute-force approach is com-
putationally expensive. Random search [3] can be used in order to
reduce computational costs by performing a certain number of ran-
domly chosen trials over the hyperparameter space. Obviously, the
parameter values that are to be investigated in a grid search can be
reduced in order to decrease the computational costs. However, by a
more coarse grid search it is more probable to miss well performing
hyperparameter combinations which might be found by a random
search. The amount of trials plays a crucial role in finding well
performing hyperparameters in a random search. Practically, often
60 trials are used because the maximum of 60 random observations
lies within the top 5% of the true maximum with a probability of
95%. However, this only holds true if the close-to-optimal region of
the hyperparameters occupies at least 5% of the whole grid surface.
Another optimization strategy to tackle the computational costs
is the Bayesian search [19]. The Bayesian search is a sequential
process which takes information of the previously evaluated hy-
perparameter combinations into account in order to choose the
next set of hyperparameters for evaluation. The downside of the
Bayesian search is that it is not parallelizable since the next search
always depends on the results of the previous searches.

In this work, we thus choose to utilize random search for hy-
perparameter optimization. Thereby, we do not require as much
computational resources as for an exhaustive grid search but are
able to parallelize the optimization. As we do not know how much
space the close-to-optimal region of the hyperparameters occupies
in our case, we double the recommended amount of random trials
to 120 in order to find well performing hyperparameters.

As stated in Section 4.1, we consider the following feature sets
for our hyperparameter optimization: RFE-PI, Union, and Union-
Spearman. For each feature set, we run two hyperparameter opti-
mizations, one using the random forest implementation which is
inherently capable of multiclass classification (RF) and one using an
one-vs.-rest variant (OvR). We discard all one-vs.one (OvO) variants
due to their slow classification speed although their classification
performance might be slightly better. In detail, we optimize the
following hyperparameters of the random forest implementation of
scikit-learn [20]: n_estimators, criterion, max_depth, max_features,
bootstrap, and class_weight.

ARES 2021, August 17-20, 2021, Vienna, Austria

Table 3: Multiclass Classification Results

Classifier F1-score Precision Recall

M-FANCI-RF 0.56808 0.58680 0.57805
M-FANCI-RF-OvO 0.57097 0.59210 0.58092
M-FANCI-RF-OvR 0.56907 0.58873 0.57852
M-FANCI-SVM-OvO 0.50320 0.55289 0.51028
M-FANCI-SVM-OvR 0.35113 0.38483 0.37827
M—Endgame 0.74641 0.76731 0.74327
M-Endgame . MI 0.75287 0.77100 0.75351

M-NYU 0.75447 0.79080 0.74648
M-NYU.MI 0.78069 0.80698 0.78038
M-ResNet 0.79574 0.81915 0.79224
M-ResNet.MI 0.80361 0.81435 0.81036
EXPLAIN-RFgpg.p1 076114 0.77862 0.75982
EXPLAIN-OVRRE.pI 0.76883 079245 0.76624
EXPLAIN-OvRUpion 0.78554 0.81631 0.77955
EXPLAIN-OVRUpion-Spearman ~ 0.78046 081541 0.77540

Results. For all three investigated feature sets (RFE-PI, Union,
Union-Spearman) we obtain best results on Setgejection USing the
OvR implementation. We refer to the three different combinations of
chosen hyperparameters and feature sets as EXPLAIN-OVRREE-p1,
EXPLAIN-OvVRypjon, and EXPLAIN-OVRynjon-Spearman in the
following. We note, that the OvR variants require more training
and classification time than the RF variants. Thus, we additionally
include the fastest RF implementation to the classifier configura-
tions for comparison. The fastest model makes use of the RFE-PI
feature set. We refer to this model as EXPLAIN-RFRgg-p1 in the
following. For reproducibility we provide the specific values for
each hyperparameter and for every model in the source code.

5 COMPARATIVE EVALUATION

In Section 5.1, we first present the results of our comparative eval-
uation. Thereafter, in Section 5.2, we examine the training and
classification speed of the various classifiers in order to assess their
real-time capability.

5.1 Classification Performance

For our comparative evaluation, we compare the selected state-
of-the-art classifiers (Section 2.2) with our developed EXPLAIN
classifier configurations (Section 4.3) using samples of Setgyaluation-

We summarize the results of this evaluation in Table 3. The
ResNet-based approaches achieve the best results. Our EXPLAIN-
OvVRynjon configuration is among our classifiers the best and ac-
complishes an f1-score of 78.554%. By this means, it is the next
best classifier after the ResNet-based approaches. The M-NYU.MI
model achieves comparable results. An f1-score of 78.554% might
appear rather low but devices infected with DGA-based malware
will typically generate multiple AGDs per day. Thus real-world
counteractions would not have to be triggered based on a single
classification but rather on the fact that multiple AGDs were attrib-
uted to the same DGA.

All deep learning models benefit from class weighting. The NYU
model profits the most and improves its f1-score by over 2.6%. The

ARES 2021, August 17-20, 2021, Vienna, Austria

adapted feature-based approaches of related work perform poorly.
Our best EXPLAIN configuration is by over 21.45% in f1-score better
than the best FANCI-based approach. EXPLAIN-OVRunion-Spearman
is slightly worse than EXPLAIN-OvRypjon. EXPLAIN-OVRREE-pr
and EXPLAIN-RFRpg-py achieve with an f1-score of approximately
76% slightly worse results compared to the EXPLAIN configurations
that are based on the Union feature set. However, both of these
classifiers are better than all state-of-the-art classifiers except for
M-NYU.MI and the ResNet-based approaches.

To better visualize the classification performance and to compare
our best classifier configuration (EXPLAIN-OvRypion) with the best
classifier proposed in related work (M-ResNet.MI), we present a
combined confusion matrix in Fig. 1.

The combined confusion matrix shows for both classifiers the
relative amount of samples belonging to classes displayed on the
vertical axis that are labeled as classes shown on the horizontal
axis. For every combination of true and predicted label, space in
form of a square is reserved within the figure. Each square is halved
into two triangles where the upper left triangle is dedicated to
the samples classified by EXPLAIN-OvRypion and the lower right
triangle visualizes the classification performance of M-ResNet.MI.
The individual achieved scores for both classifiers and every class
are encoded within the respective triangles as shades of either blue
(EXPLAIN-OVRypion) or red (M-ResNet.MI). An f1-score of 0% is
encoded as a transparent triangle and 100% is represented by a fully
opaque triangle. A perfect classifier would produce only opaque
triangles on the identity matrix diagonal. The benign class is located
at the upper left part of the figure. Thereafter are the DGA families
listed in alphabetical order.

Surprisingly, both classifiers discriminate most DGA families
as well as the benign class equally well. Moreover, several DGA
families which are almost not recognized by our approach are also
not recognized by M-ResNet.MI (e.g. Dircrypt, Goznym, Hesperbot,
Tempedreve). These results indicate that the ResNet-based approach
might learn similar features. However, three DGA families (Redyms,
Tempedrevetdd, and Xshellghost) are only detected by M-ResNet.ML
It might be possible to engineer new discriminating features by
investigating the samples of these three classes in order to enable
the correct detection by our classifier. Lastly, both classifiers tend
to attribute samples of related DGA families to a single class (e.g.
Pykspa-Pykspa2 and Vidro-Vidrotid).

All in all, these results show that our EXPLAIN classifiers are
able to achieve competitive results while being at the same time,
due to the feature-based approach, far more explainable.

5.2 Training & Classification Speed

In the following, we compare the training and classification times
of the classifiers proposed in related work with our proposed clas-
sifiers. Note, we acknowledge that the reported times are difficult
to compare as the deep learning classifiers are able to take advan-
tage of GPU processing while the feature-based approaches are
evaluated on CPUs. However, the main goal of this study is to de-
termine whether it is realistic to utilize the classifiers for real-time
classification. Although, the hardware components may be scaled,
the relative time difference in training and classification time allow

Drichel et al.

Table 4: Performance Analysis

Classifier S Csier 5] Sessigoaton Time s]
M-FANCI-RF 28 198
M-FANCI-RF-OvO 2528 31711
M-FANCI-RF-OvR 1423 435
M-FANCI-SVM-OvO 114 285851
M-FANCI-SVM-OvR 13 042 47 239
M-Endgame 1862 151
M-Endgame.MI 1846 149
M-NYU 596 55
M-NYU.MI 577 55
M-ResNet 1106 133
M-ResNet.MI 1028 134
EXPLAIN-RFgrpg-pr 307 128
EXPLAIN-OVRggg-p1 2533 231
EXPLAIN-OvVRypion 7036 534
EXPLAIN-OVRUpion-Spearman 3036 358

for a comparison within the group of deep learning classifiers and
within the group of feature-based approaches.

In Table 4, we display the training time per classifiers and the
classification time per samples for all investigated classifiers. All
times are measured during the comparative evaluation presented in
Section 5.1. The classification time per sample includes for feature-
based approaches the feature extraction time and for deep learning
based approaches the required time for the input pre-processing
(i.e. converting domain names to a sequence of integers).

We ignore the training and classification times for the FANCI-
based approaches as they performed poorly. However, for the sake
of completeness we list their times within the table. Regarding
the group of deep learning based approaches, the NYU models
are fastest in training and predicting followed by the ResNet-based
approaches. The Endgame models are the slowest. Within the group
of our proposed classifiers, EXPLAIN-RFRpg.-py is by far the fastest to
train and classifies samples similarly fast as the M.ResNet.MI model
although it is executed on CPUs. EXPLAIN-OvVRRg.-py is the second
fastest EXPLAIN model followed by EXPLAIN-OvRunion-Spearman-
The twelve additional features included in the Union feature set,
compared to Union-Spearman, significantly increase the training
as well as the prediction time.

In order to approximate the required classifier’s performance
for real-time classification, we measure the average amount of oc-
curring NXDs within the university network which was used as
source for benign data during our previous experiment. On average,
we observed 174 NXD responses per second with an maximum
peak of 2325 NXD responses per second. Thus a classifier has at
most 430us in order to classify a single sample. All classifier under
consideration except for EXPLAIN-OvVRypion are thus able to per-
form real-time classification. EXPLAIN-OvRypion requires 534us
and thus classifies 1872 samples per second. However, during the
whole one-month recording, the maximum packets per second ex-
ceeded only for four consecutive seconds the mark of 1872. Thus
for the live classification of a large university network, EXPLAIN-
OvRUnion Would only delay a few packets for a few seconds within a

First Step Towards EXPLAINable DGA Multiclass Classification ARES 2021, August 17-20, 2021, Vienna, Austria

Predicted Label

gameover_p2p
monerominer
murofetweekly
tempedrevetdd
tinba

murofet
pandabanker

pitou
volatilecedar

cryptolocker
darkshell
diamondfox
dircrypt
dmsniff
downloader
tempedreve
d

dyre
xshellghost

blackhole
bobax
conficker
corebot
dnschanger
ekforward
‘emotet
feodo
gameover
hesperbot
infy
makloader
matsnu
mirai
modpack
nymaim2
oderoor
omexo
paderypt
proslikefan
pushdo
pushdotid
pykspa
pykspa2
pykspa2s
qadars
qakbot
qghost
qgsnatch
amdo
amnit
anbyus.
edyms
Suppobox
tinynuke
urlzone
vawtrak
vidro
vidrotid
virut
xxhex

nymaim
sphinx

£
s
8
-l
S
E

bedep
beebone
ccleaner
chinad
chir
ebury
fobber
qgozi
goznym
aspy
locky
madmax
necurs
simda
sisron
ud2

ud3

5
8

w

c
o
-
g
H
benign Jill
bamital { [l
banjori | |
bedep | |
beebone | |
blackhole | |
bobax [|
ccleaner []
chinad]
chir [|

conficker

corebot
cryptolocker
darkshell
diamondfox

dircrypt
dmsniff B

dnschanger “

downloader
dyre

ebury
ekforward
emotet
feodo ||
fobber H
gameover]
gameover_p2p | |
ozl]
goznym
aspy | 4 4
hesperbot
infy | |
locky H
madmax |]
makloader
matsnu
mirai]
modpack [|
monerominer H

murofet
murofetweekly
mydoom
necurs

nymaim 1

nymaim2 | |

oderoor

omexo ..
padcrypt
pandabanker | |
pitou]
proslikefan =
pushdo |]
pushdotid |]

pykspa | |

pykspa2
pykspa2s
qadars
qakbot A
ghost []
qgsnatch [|
ramdo []
ramnit [|
ranbyus []
redyms
rovnix
shifu
simda
sisron
sphinx
suppobox [|
sutra [|
symmi []
szribi H
tempedreve
tempedrevetdd A
tinba | |
tinynuke A
tofsee | |
torpig ||
tsifiri [|
ud2 [|
ud3 [|
urizone []
vawtrak]
vidro H
|

vidrotid

virut

volatilecedar

wd
xshellghost A

xxhex | |
V: EXPLAIN-OVRypjon 4: ResNet.Mi

True Label

Figure 1: Combined confusion matrix of EXPLAIN-OvVRypjon and M-ResNet.MI.

whole month. We thus argue that EXPLAIN-OvRypjon is also well- 6 CONCLUSION & DISCUSSION

suited for live classification. Moreover, our proposed EXPLAIN In this work, we proposed EXPLAIN, a feature-based and context-

classifiers are highly parallelizable and scale extremely well with less DGA multiclass classifier and compared different EXPLAIN

the number of CPU cores. configurations with several state-of-the-art classifiers in a unified
setting on the same real-world data.

Our best performing model, EXPLAIN-OvRypjon uses 76 features

and achieves the best f1-score after the ResNet-based approaches.

ARES 2021, August 17-20, 2021, Vienna, Austria

EXPLAIN-OvRRgg-pr and EXPLAIN-RFRpg-p; make use of only
28 features and beat all feature-based approaches proposed in re-
lated work by a huge margin. Moreover, they achieve higher f1-
scores than the deep learning based approaches: M-Endgame, M-
Endgame.MI, and M-NYU.

Surprisingly, the in detail comparison between EXPLAIN-
OvRynion and M-ResNet.MI indicates that the deep learning classi-
fier might learn very similar features as the ones we have selected
for our EXPLAIN classifiers.

Finally, we analyzed the real-time capability of the various classi-
fiers. All of our proposed classifiers are highly capable of real-time
classification. Our fastest proposed model, EXPLAIN-RFRgg-py, is
even able to classify 7812 samples per second.

Which EXPLAIN configuration to choose depends on the indi-
vidual requirements on the classifier. EXPLAIN-OvRypjon achieves
the best classification results using 76 features. Selecting a con-
figuration that uses the RFE-PI feature set with only 28 fea-
tures could make it easier to interpret predictions from a model.
EXPLAIN-OVRUnion-Spearman Offers a compromise as it uses 64 fea-
tures but achieves comparable classification results as EXPLAIN-
OvRynion- The EXPLAIN-RFRpg-pr configuration should be chosen
over EXPLAIN-OvRgpg-p; when the computational resources are
limited. Otherwise, for a fast, explainable, and slightly better classi-
fier EXPLAIN-OvVRgg-pr should be chosen.

By design our feature-based approach is more explainable com-
pared to the deep learning classifiers proposed in related work as
predictions can be traced back to the characteristics of the used of
features. In contrast, deep learning classifiers only output a vector
of probabilities indicating to which class a particular domain can
be attributed to without referring to the actual input.

By proposing a competitive feature-based approach we made
a first step towards explainable DGA multiclass classification. Ul-
timately, a focused comparison of different approaches to DGA
multiclass classification with respect to explainability is required.
Our work is a necessary prerequisite for a comparative explain-
ability study in which competitively performing feature-based and
deep learning based approaches have to be contrasted. In future
work it is required to compare the level of explainability provided
by our approach with different techniques, such as Lemna [12]
and DMM-MEN [11], which try to explain the predictions of deep
neural network classifiers. Moreover, recently, a visual analytics
system [2] was proposed which strives to provide understandable
interpretations for predictions of deep learning based DGA de-
tection classifiers. This system first clusters the activations of a
model’s neurons and subsequently leverages decision trees in order
to explain the constructed clusters.

Additionally, future work could analyze the interpretations of
deep learning based models for correctly classified samples which,
however, are incorrectly classified by our approach. It might be
possible to extract used features of deep learning models which
enable the correct classification of such samples for our classifier.
Thereby, it might be possible to further enhance the performance
of our approach.

Drichel et al.

ACKNOWLEDGMENTS

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 833418. Simulations were performed with comput-
ing resources granted by RWTH Aachen University under project
rwth0438.

REFERENCES

[1] Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed

Abu-Nimeh, Wenke Lee, and David Dagon. 2012. From Throw-Away Traffic to

Bots: Detecting the Rise of DGA-Based Malware. In USENIX Security Symposium.

Franziska Becker, Arthur Drichel, Christoph Miiller, and Thomas Ertl. 2020.

Interpretable Visualizations of Deep Neural Networks for Domain Generation

Algorithm Detection. In Symposium on Visualization for Cyber Security. IEEE.

[3] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. The Journal of Machine Learning Research 13, 1 (2012).

[4] Leyla Bilge, Sevil Sen, Davide Balzarotti, Engin Kirda, and Christopher Kruegel.
2014. Exposure: A Passive DNS Analysis Service to Detect and Report Malicious
Domains. ACM Transactions on Information and System Security 16, 4 (2014).

[5] Leo Breiman. 2001. Random Forests. Machine learning 45, 1 (2001).

[6] Arthur Drichel, Ulrike Meyer, Samuel Schiippen, and Dominik Teubert. 2020.
Analyzing the Real-World Applicability of DGA Classifiers. In International Con-
ference on Availability, Reliability and Security. ACM.

[7] Arthur Drichel, Ulrike Meyer, Samuel Schiippen, and Dominik Teubert. 2020.

Making Use of NXt to Nothing: Effect of Class Imbalances on DGA Detection

Classifiers. In International Conference on Availability, Reliability and Security.

ACM.

Eduroam. World wide education roaming for research and education.

https://www.eduroam.org/.

Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and

Francisco Herrera. 2012. A Review on Ensembles for the Class Imbalance Problem:

Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews) 42, 4 (2012).

Martin Grill, Ivan Nikolaev, Veronica Valeros, and Martin Rehak. 2015. Detecting

DGA Malware Using NetFlow. In IFIP/IEEE International Symposium on Integrated

Network Management.

[11] Wenbo Guo, Sui Huang, Yunzhe Tao, Xinyu Xing, and Lin Lin. 2018. Explaining
Deep Learning Models - A Bayesian Non-parametric Approach. In Advances in
Neural Information Processing Systems.

[12] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. 2018.

LEMNA: Explaining Deep Learning based Security Applications. In Proceedings

of the 2018 ACM SIGSAC Conference on Computer and Communications Security.

Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. 2002. Gene

Selection for Cancer Classification using Support Vector Machines. Machine

learning 46 (2002).

[14] Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long Short-Term Memory.
Neural computation 9, 8 (1997).

[15] Kenji Kira and Larry A. Rendell. 1992. The Feature Selection Problem: Traditional
Methods and a New Algorithm. In National Conference on Artificial Intelligence.
AAAI Press / The MIT Press.

[16] Igor Kononenko, Edvard Simec, and Marko Robnik-Sikonja. 1997. Overcoming

the Myopia of Inductive Learning Algorithms with RELIEFF. Applied Intelligence

7,1 (1997).

Gilles Louppe, Louis Wehenkel, Antonio Sutera, and Pierre Geurts. 2013. Under-

standing variable importances in forests of randomized trees. (2013).

Paul Mockapetris. 1987. Domain Names - Implementation and Specification. Tech-

nical Report. RFC1035. https://tools.ietf.org/html/rfc1035

[19] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. 1978. The application
of Bayesian methods for seeking the extremum. Towards global optimization 2,
117-129 (1978).

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011).

Daniel Plohmann, Khaled Yakdan, Michael Klatt, Johannes Bader, and Elmar

Gerhards-Padilla. 2016. A Comprehensive Measurement Study of Domain Gen-

erating Malware. In USENIX Security Symposium.

[22] Joshua Saxe and Konstantin Berlin. 2017. eXpose: A Character-Level Convo-
lutional Neural Network with Embeddings For Detecting Malicious URLs, File
Paths and Registry Keys. arXiv:1702.08568.

[23] Stefano Schiavoni, Federico Maggi, Lorenzo Cavallaro, and Stefano Zanero. 2014.
Phoenix: DGA-Based Botnet Tracking and Intelligence. In Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer.

[2

)

[

[10

(13

(17

[18

[21

https://tools.ietf.org/html/rfc1035

First Step Towards EXPLAINable DGA Multiclass Classification

[24] Samuel Schiippen, Dominik Teubert, Patrick Herrmann, and Ulrike Meyer. 2018.
FANCI: Feature-Based Automated NXDomain Classification and Intelligence. In
USENIX Security Symposium.

[25] Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, and Amri Napolitano.
2009. RUSBoost: A Hybrid Approach to Alleviating Class Imbalance. IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 40, 1
(2009).

[26] Charles Spearman. 1961. The proof and measurement of association between
two things. (1961).

[27] Duc Tran, Hieu Mac, Van Tong, Hai Anh Tran, and Linh Giang Nguyen. 2018.
A LSTM Based Framework for Handling Multiclass Imbalance in DGA Botnet
Detection. Neurocomputing 275 (2018).

[28] Ryan J. Urbanowicz, Randal S. Olson, Peter Schmitt, Melissa Meeker, and Ja-
son H. Moore. 2018. Benchmarking relief-based feature selection methods for
bioinformatics data mining. Journal of biomedical informatics 85 (2018).

[29] Jonathan Woodbridge, Hyrum S. Anderson, Anjum Ahuja, and Daniel Grant.
2016. Predicting Domain Generation Algorithms with Long Short-Term Memory
Networks. arXiv:1611.00791.

[30] Sandeep Yadav and A. L. Narasimha Reddy. 2011. Winning with DNS Failures:
Strategies for Faster Botnet Detection. In International Conference on Security
and Privacy in Communication Systems. Springer.

[31] Bin Yu, Jie Pan, Jiaming Hu, Anderson Nascimento, and Martine De Cock. 2018.
Character Level Based Detection of DGA Domain Names. In International Joint

ARES 2021, August 17-20, 2021, Vienna, Austria

Conference on Neural Networks. IEEE.

[32] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level Convolutional
Networks for Text Classification. In Advances in Neural Information Processing
Systems 28. Curran Associates, Inc.

A APPENDIX

In Fig. 2, we support the removal of multicollinear features within
the Union set (see Section 4.1) by visualizing the heatmap of corre-
lating features together with a dendrogram.

In Table 5, we provide an overview of all features selected by
the different selection methods including the membership to a
corresponding feature set and extracted feature values for two
sample domains, dy and d;. A feature is defined as a function ¥ of a
sample d. 7 (d) denotes the extracted feature value. In our example,
dp = iee-security.org represents a benign NXD caused by a typing
error of ieee-security.org and di = mwkwhvkdpp.info is a malicious
NXD generated by the Conficker DGA.

ARES 2021, August 17-20, 2021, Vienna, Austria Drichel et al.

20

«

longest-run-of-ones-test
1-gram-alphabet-diversity
consonants-max-streak-length
consonant-to-vowel-ratio
first-character-pair
‘consecutive-consonant-ratio
‘consonants-character-ratio
longest-run-of-ones-test-unicode
binary-matrix-rank-test-unicode
binary-matrix-rank-test
suffix-standard-deviation

vowels-character-ratio
vowels-max-streak-length
alphabet-u

alphabet-i

alphabet-o
1-gram-kurtosis
1-gram-skewness

1-gram-shannon-entropy
second-level-length
domain-name-length
2lib-bits-compression-ratio
subdomains-length
3-gram-alphabet-size
3-gram-shannon-entropy
2-gram-alphabet-size
2-gram-shannon-entropy
bits-entropy
subdomains-mean-length
contains-digits
end-digit-edge-distance
start-digit-edge-distance
consecutive-digit-ratio
decimaldigits-max-streak-length
decimaldigits-character-ratio
hex-exclusive-subdomains-ratio
hexadecimaldigits-max-streak-length
hexadecimaldigits-character-ratio
1-gram-arithmetic-mean
repeated-characters-ratio
1-gram-harmonic-mean
1-gram-max
1-gram-standard-deviation
primedigits-character-ratio
primedigits-max-streak-length

adjacent-duplicates-ratio

Frsoteosey s o= o 3 32558 2y 2zE L33 EC8eEeERERERS Y °
2525853 £ 3 g 5 52 i 52 5228252 23 2
2B2ERESZS LR ge g 5 28 E2ECee e PS5 2 PEREEREEE 8
§8eg52yects 52 B 2 8905232283888, 8,828 88 b
$fvgey 39 @ 2 2322£%s b3 & 5% %
S5 %:2C8L320828 £ x g ° 9308289889 cloo2igsLssEds Ll £
Pg 0805888 X3 883 9 & BT eV E R b s 008 8] g% kR g
IZE B EEE R ED 55 £ g 5288535288285 ¢E88¢ES5E5E5EENRESE 3
898529 TEs 23 & £ T € €& T ET® E 5533 728 2 5 E 5285 a
AR E] S % g FS2IEsTErS 28382 IS2TEEEsT E510 s
2E3E8 9 CSEGS 53 ? £ EZES EZEE 2 L5355 5558 EBYse 3
seeEsf g2 8 % E - g svgESSeYeY © ooggLfadgfliPog SLES 2
EESES252 x50 e = SESSsyaoESE E DT L;DesOESSE 9D 8
2ES28 Z29c¢g X R g TE"8L"FAEdE § 3¢ 585888 £3 3
gEE? 3SLBSE g2 # g H gNg 8 2 3 5ft 5 H 3
§585 §8s85% H g & ; 2 = 2 §¢8 3 ?gs Egg2 5
298 fe2e” 3 4 H A 2 s & 3 § SEgsE~E 5E3 3
bt s g g &
2 gvge = N -] ag
S “ o 8 £ O x E-1 T
© g M o e a
5 g 233
- =
-1.00 -0.75

Figure 2: Heatmap and dendrogram of the correlating features of the Union feature set.

First Step Towards EXPLAINable DGA Multiclass Classification ARES 2021, August 17-20, 2021, Vienna, Austria

Table 5: All Selected Features: dg = iee-security.org, di = mwkwhvkdpp.info

Feature RFE-MDI RFE-PI RELIEFF MultiSURF Union-Spearmann Type Output F(dp) F(dy)
1 adjacent-duplicates-ratio 4 4 v linguistic rational 0.08333 0.10000
2 alphabet-a v v v v v linguistic integer 0 0
3 alphabet-b v v v linguistic integer 0 0
4 alphabet-c v v linguistic integer 1 0
5 alphabet-d v v v linguistic integer 0 1
6 alphabet-e v v v linguistic integer 3 0
7 alphabet-f v v linguistic integer 0 0
8 alphabet-g v v linguistic integer 0 0
9 alphabet-h v v linguistic integer 0 1
10 alphabet-i v v linguistic integer 2 0
11 alphabet-j v v v v linguistic integer 0 0
12 alphabet-k v v v linguistic integer 0 2
13 alphabet-1 v v v linguistic integer 0 0
14 alphabet-m v v v v linguistic integer 0 1
15 alphabet-n v v v v linguistic integer 0 0
16 alphabet-o v v v linguistic integer 0 0
17 alphabet-p v v linguistic integer 0 2
18 alphabet-q v v v linguistic integer 0 0
19 alphabet-r v v v linguistic integer 1 0
20 alphabet-s v v v v linguistic integer 1 0
21 alphabet-t v v v linguistic integer 1 0
22 alphabet-u v v linguistic integer 1 0
23 alphabet-v v v linguistic integer 0 1
24 alphabet-w v v v linguistic integer 0 2
25 alphabet-x v v v linguistic integer 0 0
26 alphabet-y 4 4 v v linguistic integer 1 0
27 alphabet-z v v v linguistic integer 0
28 consecutive-consonant-ratio v v v v linguistic rational 0.16667 1.00000
29 consecutive-digit-ratio v v linguistic rational 0.00000 0.00000
30 consonant-to-vowel-ratio v v v linguistic rational 0.83333 10.00000
31 consonants-character-ratio v v v v linguistic rational 0.41667 1.00000
32 consonants-max-streak-length 4 4 v linguistic integer 2 10
33 contains-digits v linguistic binary 0 0
34 decimaldigits-character-ratio 4 4 v v linguistic rational 0.00000 0.00000
35 decimaldigits-max-streak-length 4 v linguistic integer 0 0
36 end-digit-edge-distance 4 v 4 linguistic integer -1 -1
37 first-character-pair 4 4 4 v linguistic integer 10411 14379
38 hexadecimaldigits-character-ratio 4 4 v v linguistic rational 0.33333 0.10000
39 hexadecimaldigits-max-streak-length 4 v v linguistic integer 2 1
40 inverse-hamming-distance 4 v v linguistic rational 1.00000 1.00000
41 primedigits-character-ratio 4 v v linguistic rational 0.08333 0.30000
42 primedigits-max-streak-length 4 4 v linguistic integer 1 2
43 repeated-characters-ratio v v linguistic rational 0.22222 0.42857
44 start-digit-edge-distance v v v v v linguistic integer -1 -1
45 subdomain-digit-sum v v v v linguistic integer 238 237
46 suffix-digit-sum v v v v v linguistic integer 67 80
47 suffix-standard-deviation v v v v v linguistic rational 4.64280 3.67423
48 syllable-count v v v v linguistic integer 4 2
49 vowels-character-ratio v v v v linguistic rational 0.50000 0.00000
50 vowels-max-streak-length v v v v v linguistic integer 3 0
51 weighted-streaks v v linguistic rational 0.65278 20.36000
52 domain-name-length v v v v v structural integer 16 15
53 hex-exclusive-subdomains-ratio 4 v v v structural rational 0.00000 0.00000
54 second-level-length v v v v v structural integer 12 10
55 subdomains-length v v v v v structural integer 12 10
56 subdomains-mean-length v v v v v structural rational 12.00000 10.00000
57 suffix-length v v v v v structural integer 3 4
58 1-gram-alphabet-diversity v v v v statistical rational 0.75000 0.70000
59 1-gram-alphabet-size v v v statistical integer 9 7
60 1-gram-arithmetic-mean v statistical rational 1.33333 1.42857
61 1-gram-harmonic-mean 4 v v statistical rational 1.14894 1.27273
62 1-gram-kurtosis v v statistical rational 1.50000 -1.91667
63 1-gram-max v v statistical integer 3 2
64 1-gram-shannon-entropy v v v statistical rational 3.02206 2.72193
65 1-gram-skewness v v statistical rational 1.75000 0.28868
66 1-gram-standard-deviation v v statistical rational 0.66667 0.49487
67 2-gram-alphabet-size 4 v 4 statistical integer 11 9
68 2-gram-shannon-entropy 4 4 v 4 statistical rational 3.45943 3.16993
69 3-gram-alphabet-size 4 v 4 statistical integer 10 8
70 3-gram-shannon-entropy 4 v 4 statistical rational 3.32193 3.00000
71 binary-matrix-rank-test v 4 v statistical binary 1 0
72 binary-matrix-rank-test-unicode v 4 v statistical binary 0 1
73 bits-entropy v v v statistical rational 5.67243 5.45943
74 longest-run-of-ones-test v v v statistical binary 1 1
75 longest-run-of-ones-test-unicode v v statistical binary 1 1
76 zlib-bits-compression-ratio v v statistical rational 2.28571 242424

	Abstract
	1 Introduction
	2 Related Work
	2.1 DGA Detection Classifiers
	2.2 Selected State-of-the-Art Classifiers

	3 Evaluation Overview
	3.1 Data Sets
	3.2 Experimental Setup

	4 EXPLAIN
	4.1 Feature Engineering & Selection
	4.2 Selected Features
	4.3 Hyperparameter Optimization

	5 Comparative Evaluation
	5.1 Classification Performance
	5.2 Training & Classification Speed

	6 Conclusion & Discussion
	Acknowledgments
	References
	A Appendix

