Towards Privacy-Preserving
Classification-as-a-Service for DGA Detection

Arthur Drichel*, Mehdi Akbari Gurabif, Tim Amelungi, and Ulrike Meyer*
* RWTH Aachen University, Germany: {drichel, meyer} @itsec.rwth-aachen.de
T Fraunhofer FIT, Germany: mehdi.akbari.gurabi @fit.fraunhofer.de
I RWTH Aachen University, Germany: tim.amelung @rwth-aachen.de

Abstract—Domain generation algorithm (DGA) classifiers can
be used to detect and block the establishment of a connection be-
tween bots and their command-and-control server. Classification-
as-a-service (CaaS) can separate the classification of domain
names from the need for real-world training data, which are
difficult to obtain but mandatory for well performing classi-
fiers. However, domain names as well as trained models may
contain privacy-critical information which should not be leaked
to either the model provider or the data provider. Several
generic frameworks for privacy-preserving machine learning
(ML) have been proposed in the past that can preserve data
and model privacy. Thus, it seems high time to combine state-
of-the-art DGA classifiers and privacy-preservation frameworks
to enable privacy-preserving CaaS, preserving both, data and
model privacy for the DGA detection use case.

In this work, we examine the real-world applicability of four
generic frameworks for privacy-preserving ML using different
state-of-the-art DGA detection models. Our results show that
out-of-the-box DGA detection models are computationally in-
feasible for privacy-preserving inference in a real-world setting.
We propose model simplifications that achieve a reduction in
inference latency of up to 95%, and up to 97 % in communication
complexity while causing an accuracy penalty of less than 0.17%.
Despite this significant improvement, real-time classification is
still not feasible in a traditional two-party setting. Thus, more
efficient secure multi-party computation (SMPC) or homomor-
phic encryption (HE) schemes are required to enable real-world
feasibility of privacy-preserving CaaS for DGA detection.

Index Terms—domain generation algorithm (DGA) detection,
classification-as-a-service, privacy-enhancing technologies

I. INTRODUCTION

Domain generation algorithms (DGAs) are incorporated in
many malware families and used to impede the blocking of the
connection establishment between bots and their command and
control (C2) server. For this purpose, they pseudo-randomly
generate a huge number of domain names which are then
queried. Nearly all of the queries result in non-existing domain
(NXD) responses. The botnet master knows the generation
scheme and can thus register a subset of the generated domains
in advance. As soon as a bot queries one of the registered
domains, it receives the valid IP address of the C2 server and
is now ready to receive commands for malicious actions.

Machine learning (ML) can be used to train classifiers that
are capable of separating benign NXDs, e.g., generated by

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 833418.
Simulations were performed with computing resources granted by RWTH
Aachen University under project rwth0438.

typos or by misconfigured software, from malicious NXDs
generated by DGAs. However, there are two hurdles to over-
come. First, ML is a computationally expensive task and thus
requires considerable computing power. Second, it takes a
significant amount of real-world training data, often difficult
to obtain, to produce classifiers that perform well.

Classification-as-a-service (CaaS) circumvents these issues
by providing classification services on powerful cloud servers
to a multitude of clients, enabling even resource constrained
devices to benefit from the advantages of ML without having
to access training data.

Many interesting ML applications classify sensitive data, for
example medical information for cancer diagnosis [1]. Privacy-
preserving measures can be used to reduce potential leakage
of sensitive information. However, privacy preservation is
particularly challenging in ML as there is an inherent need for
huge amounts of data. Additionally, CaaS providers intend to
protect their model from being stolen, as it is their intellectual
property [2]. Consequently, privacy-preserving measures that
protect the privacy of data and models are imperative.

NXD information as used by DGA detection models is
generally sensitive, particularly in an enterprise environment.
For instance, typos can indicate websites visited by employees
and customers. Unintentional access to these could even in-
crease the success rate of possible phishing attacks. Therefore,
privacy measures are essential as revealing domain name
information in plaintext to a third-party service provider for
DGA detection is not desirable.

Several frameworks for privacy-preserving ML have been
proposed in the past. However, their application comes with
non-negligible costs compared to plaintext classifiers. First,
the inference latency increases notably due to a substantial
increase in computational complexity. Second, the commu-
nication complexity increases significantly, especially with
secure multi-party computation (SMPC) based approaches.
These additional costs pose a serious problem for DGA
detection because real-time inference is required in most real-
world settings. For the real-time classification of all NXDs
that occur in a large real-world network, an inference latency
of 405us to 430us is required according to [3], [4].

In this work, we implement different state-of-the-art DGA
detection models in four generic privacy-preserving ML
frameworks and investigate their real-world applicability. We
comparatively evaluate the privacy-preserving implementa-

tions and investigate how different model simplifications affect
the models’ accuracy in favor of lower inference latency and
communication complexity in a trade-off study. We propose
three model simplifications: reduction of the embedding di-
mension, removal of ReLU activation functions, and exchange
of max with average pooling layers. Consequently, with this
work we answer the question of whether privacy-preserving
DGA detection can be realized with current tools in a real-
world scenario.

II. RELATED WORK

In this section, we first present related work on state-of-
the-art DGA detection classifiers. Subsequently, we discuss
research efforts regarding privacy-preserving ML frameworks.

A. DGA Detection Classifiers

Several approaches to DGA detection that leverage different
amounts of data have been proposed in the past. These
approaches can be divided into context-aware [5]-[10] and
context-less approaches [3], [11]-[14]. The former use ad-
ditional contextual information to improve the classification
of domain names as either benign or malicious. The latter
base their classification solely on information extracted from
a single domain name and are therefore less resource-intensive
and privacy-invasive compared to context-aware approaches.

In this work, we focus on context-less approaches, as they
process less potentially privacy-critical data for classifica-
tion. In addition, several studies have shown that context-
less approaches are able to achieve state-of-the-art detection
performance without relying on additional data [3], [11]-[13].

The proposed context-less ML classifiers can further be
grouped according to feature-based (e.g., support vector ma-
chines (SVMs) or random forests (RFs) [11]) and featureless
(deep learning) classifiers such as recurrent (RNNs) [12],
convolutional (CNNs) [13], [14], and residual neural networks
(ResNets) [3]. In previous studies, both types of classifiers
have been contrasted and deep learning classifiers have been
shown to outperform classical feature-based approaches to
DGA detection [3], [12], [15], [16].

B. Privacy-Preserving Machine Learning Frameworks

Research in the area of privacy-preserving ML has been
rich in the past few years and several frameworks have been
developed using different privacy-enhancing technologies.

The proposed ML frameworks typically only support a
limited number of classifier types. Homomorphic encryption
(HE) based approaches for privacy-preserving evaluation of
decision trees and RFs are proposed in [17]-[20]. An approach
to the private evaluation of SVMs is presented in [21].
Since deep learning classifiers outperform classical feature-
based approaches in our use case, we are generally interested
in privacy-preserving ML frameworks for neural networks.
These frameworks can be categorized in HE-based [22]—-[27],
SMPC-based [28]-[34], functional encryption-based [35], and
hybrid [36], [37] approaches.

In general, SMPC allows multiple parties to jointly eval-
uate a function without revealing their private inputs to said
function. SMPC approaches can generally be categorized into
approaches based on (arithmetic or boolean) secret sharing
(e.g., [38]-[40]), garbled circuits (GC) [41], and approaches
based on homomorphic encryption (e.g., [42], [43]). Some
approaches to SMPC, such as [41], are restricted to a two-
party setting, while others, such as [44], support multi-party
protocols.

In the past years, a variety of different frameworks sup-
porting the development and implementation of SMPC pro-
tocols have been proposed, which support one or more of
the above approaches. ABY [45] is a framework for mixed-
protocol secure two-party computation based on arithmetic
sharing, boolean sharing, and Yao’s GCs. Frameworks such
as SPDZ [46] (restricted to linear functions) and function
secret sharing (FSS) [47] support protocols based on secret
sharing between parties. Both can be utilized for two or more
parties. SecureNN [48] supports the implementation of secure
three-party computation protocols for various neural network
building blocks with support for both linear and non-linear
functions.

HE schemes enable calculations to be evaluated on en-
crypted data without the need to decrypt them. While SMPC
can be implemented through an HE scheme, in this paper
we distinguish HE-based approaches from other SMPC-based
approaches, as their application to privacy-preserving ML
has significantly different effects on performance metrics.
HE schemes are categorized by the operations they support.
Additive and multiplicative HE schemes support addition and
multiplication over encrypted data, respectively. Fully HE
(FHE) schemes can support an unlimited number of addition
and multiplication operations over encrypted data. Leveled HE
schemes, on the other hand, only support a limited number
of operations that are constrained to a fixed multiplicative
depth [49].

There are two classic security settings for SMPC: semi-
honest adversary model and malicious adversary model. In
the semi-honest model, the adversary follows the protocol for
computation still tries to learn additional sensitive information
from the protocol transcript. In contrast, in the malicious
model, the adversary deviates arbitrarily from the protocol.
Most of the proposed privacy-preserving ML frameworks
provide semi-honest security.

III. EVALUATION SETUP

In this section, we present our evaluation setup including the
considered CaaS setting, used data sources, selected privacy-
preserving ML frameworks, and selected state-of-the-art clas-
sifiers.

A. Classification-as-a-Service Setting

In this work, we generally consider a traditional CaaS
setting with two parties: a model owner who holds the model
and a data owner who holds the domain names.

TABLE I
OVERVIEW OF PRIVACY-PRESERVING ML FRAMEWORKS

ML Framework Parties Approach Protocol Dense LSTM ConvlD Max Pool 1D Avg Pool 1D ReLU Sigmoid Embedding

PySyft [31] 3 SMPC SPDZ, SecureNN, FSS v X only 2D only 2D v v X X

TF-Encrypted [32] 3 SMPC SPDZ, SecureNN, ABY3 v X only 2D only 2D only 2D v v X

MP2ML [36] 2 HE & SMPC CKKS Scheme, ABY v X v v v v X X
OTSemi2k, OTSemiPrime, Replicated2k, ReplicatedPrime,

SecureQ8 [34] 2or3 SMPC ¢pnyok. Lowgear, PsReplicated2k, PsReplicatedPrime [39] ¥ ¥ only2D only2D only 2D v v *

CrypTen [33] 3 SMPC SPDZ, GMW v X only 2D only 2D only 2D v X X

When using SMPC, model owner and data owner se-
cret share their respective inputs between their computation
servers, such that no single party is able to reconstruct data. In
a two-party setting, both the model owner and the data owner
each run a computation server. However, honest majority
SMPC protocols, as used in some of the proposed privacy-
preserving ML frameworks, require an independent third party
to preserve privacy. In a three-party setting, an additional
computation server is operated by an independent third party,
since neither the model owner nor the data owner can operate
this server without violating the other party’s privacy. In this
work, we evaluate both, two and three-party settings with
respect to the computation servers.

When using HE, the data owner encrypts a domain name to
be classified with an HE scheme and transmits the encrypted
data to the model owner. The model owner runs inference on
the encrypted data and then transmits the encrypted result back
to the data owner. Finally, the data owner decrypts the result
to obtain the final prediction.

Both the application of SMPC and HE-based approaches
to CaaS are associated with non-negligible costs compared
to plaintext classifiers. Communication complexity as well as
inference latency increase significantly, which is a serious
problem for DGA detection because real-time inference is
required in most real-world environments.

Thus it is questionable whether an inference latency of
405us to 430us, that is required for real-time classification
[3], [4], can be achieved by privacy-preserving DGA detection
classifiers with current tools.

B. Data Sources

We obtain data for our experiments from two data sources.

1) Malicious Data: DGArchive: We collect malicious la-
beled samples from DGArchive [50] which is a database con-
taining DGA-generated domains for a multitude of different
DGA families. From this source, we obtain approximately 93
million unique domain names generated by 88 different DGAs.

2) Benign Data: University Network: We receive benign
domain names from the central DNS resolver of the campus
network of RWTH Aachen University. The campus network
incorporates several academic and administrative networks,
networks from student residences, eduroam [51], and the
network of the university hospital. From this source, we
obtain a one-month recording of September 2019 consisting
of approximately 26 million unique NXDs.

3) Dataset: We filter our benign data against all samples
of DGArchive and remove all matches to clean our data as

much as possible. Subsequently, we randomly draw at most
10k samples for each DGA in DGArchive. We follow the
guidelines of [52] and select all available samples for DGAs
for which less than 10k samples are known in order to increase
the detection performance of a trained classifier even for
weakly represented DGAs. In addition, we randomly select
the same amount of benign samples as we drew malicious
samples. Thereby, we create a balanced dataset that consists
of approximately one million samples, 500k generated by 88
different DGAs and 500k benign samples.

We use this dataset in all following experiments to train
and evaluate privacy-preserving DGA detection classifiers. To
this end, we split 80% of the samples for training a suitable
classifier and 20% for subsequent testing. We always choose
the best classifier within 50 training epochs for evaluation.

C. Selected Privacy-Preserving ML Frameworks

In this section, we present the selected privacy-preserving
ML frameworks that we use for our comparative evaluation.
We restrict our selection to open-source frameworks that are
implemented on top of TensorFlow [53] or PyTorch [54]. By
this selection method, we minimize the variance of perfor-
mance metrics and are able to structure and apply a uniform
evaluation framework.

In total, we investigate five ML frameworks in more detail.
We present the frameworks including the required number of
computation parties, supported protocols, and supported neural
network building blocks in Table L.

The frameworks support two-party or three-party settings,
which is not a restriction caused by supported SMPC protocols
but rather a design choice made by the developers. A tradi-
tional CaaS setting includes only two parties. However, we
also cover three-party frameworks to enable a performance
comparison of two-party and three-party approaches.

1) PySyft: We select PySyft [31] which is built on top of
PyTorch. It uses SPDZ for linear functions and SecureNN or
FSS for the evaluation of non-linear functions. We use FSS to
evaluate non-linear functions in PySyft in order to increase the
variety of protocols, as it is only supported by this framework.

2) TFE: We select TF-Encrypted (TFE) [32] which is
implemented on top of TensorFlow. It uses Pond, a three-party
implementation of the SPDZ protocol which only supports
linear functions. For non-linear functions, it makes use of
ABY3 (a three-party variant of ABY) or SecureNN. For our
evaluation, we use SecureNN to evaluate non-linear functions
in TFE.

3) MP2ML: We select MP2ML, a hybrid framework that
uses the CKKS HE [55] scheme to evaluate linear functions
and ABY to support non-linear layers.

4) SecureQ8: SecureQ8 [34] is an SMPC framework that
implements eight out of 30 protocols proposed by the MP-
SPDZ library [39]. Four of them provide semi-honest security
while four others provide malicious security. We exclude the
protocols that provide malicious security from our evaluation
as most other frameworks do not provide security against
this threat model. We select the remaining four protocols
for our evaluation and denote SecureQ8 with OTSemiZ2Kk,
OTSemiPrime, Replicated2k, and ReplicatedPrime by Q8-0
to Q8-3, respectively. During the time of experiments, there
was an issue with parsing quantized models preventing the
correct loading of model weights. We experimented with
different quantization methods provided by multiple Ten-
sorFlow versions, however, none of the resulting quantized
weights were parsed correctly by SecureQ8. Hence, we run
SecureQ8 with randomly initialized weights. A comparison
with a trained plaintext classifier with the same weights is
therefore not possible. While this prevents the measurement
of the approximation error caused by this framework, we are
still able to evaluate it in the context of our trade-off study
(cf. Section 1V).

5) CrypTen: We do not choose CrypTen [33] for our
evaluation as it only supports Amazon Web Service (AWS)
machines for evaluating remote settings.

In total, we thus selected seven privacy-preserving ML
framework configurations (PySyft, TF-E, MP2ML, Q8-0,
Q8-1, Q8-2, Q8-3) for further evaluation.

We set the internal parameters of each framework to the
default and recommended values given in the respective lit-
erature. For our evaluation, we operate each framework in its
respective remote setting and each entity involved in the CaaS
scenario in its own process to ensure that network communi-
cation is a necessity. However, all entities are executed on the
same machine and use the loopback interface for communica-
tion, which minimizes potential network delay. Note that the
reported inference latency for each framework can therefore
be considerably longer in a real-world environment.

D. Selected State-of-the-Art Classifiers

In this section, we present the state-of-the-art classifiers that
we implement in the selected privacy-preserving ML frame-
works. Since the deep learning classifiers outperform feature-
based approaches for DGA detection, we choose three deep
learning classifiers that differ in their architecture. However,
we also adapt one feature-based approach for comparison.

For classification, all deep learning models start by pro-
cessing integer encoded domain names using an embedding
layer that includes semantics into the encoding. The embedded
domain names are then processed by different hidden layers
depending on the utilized model. Below we give a brief
overview of the different models. More detailed information
can be found in the respective literature [3], [13], [56].

1) Inline: Yu et al. [56] proposed a model based on a one-
dimensional convolutional layer with 1,000 filters for DGA
binary classification.

2) NYU: The authors of [13] also proposed a CNN-based
model, but it consists of two stacked one-dimensional convo-
lutional layers with 128 filters.

3) ResNet: Drichel et al. [3] proposed a ResNet-based
classifier consisting of a single residual block that introduces
skip connections between convolutional layers to counteract
the vanishing gradient problem. Likewise to the NYU model,
the ResNet model uses two one-dimensional convolutional
layers with 128 filters within the residual.

4) Feature-Based Approach: FANCI [11] is a feature-based
DGA detection approach that implements a random forest (RF)
and a support vector machine (SVM) classifier. Both classifier
extract for each domain name to be classified, 21 features
that are categorized into linguistic, statistical, and structural
features. As all selected privacy-preserving ML frameworks
are only applicable to neural network classifiers, we create a
deep learning classifier out of FANCI by passing extracted
features to a dense layer consisting of 32 neurons with ReLU
activation function. Similar to the deep learning models, the
dense layer’s output is then passed to a single output neuron
with sigmoid activation to perform the final logistic regression
for binary classification.

5) Model Modifications: One-dimensional convolutional
layers as used by the three deep learning models are not
supported in PySyft, TF-E, and SecureQS8. Hence, we construct
two-dimensional variants of the Inline, NYU, and ResNet
models by replacing all one-dimensional convolutional layers
with two-dimensional convolutions. For compatibility, we add
an additional dimension to the input data which we pad with
zeros. Provided sufficient training, these variants achieve the
same accuracy as the unmodified models.

During testing, PySyft, SecureQ8, and MP2ML frequently
crashed, timed out, or refused to run due to the complexity of
the models. Therefore, additional modifications are necessary
to enable an evaluation of these frameworks. To do this, we
reduce layer dimensionality to eliminate these stability prob-
lems while preserving model architectures as much as possible.
In detail, we reduce the dimension of the convolutional layer
for the Inline model from 1,000 to 100. Further, we reduce
the dimension of the convolutional layers included in the
NYU and ResNet model from 128 to 32. For the ResNet
model, we additionally reduce the kernel size of the max
pooling layer from 4 to 3. We determined these values by
iteratively reducing the dimensionality of the layers until all
models run stable in all frameworks. We calculate the potential
decline in classification performance caused by the model
changes by training unmodified and modified models with the
data set described in Section III-B3. We present the achieved
accuracies (ACC), true positive rates (TPRs), and false positive
rates (FPRs) in Table II.

The resulting loss of accuracy is insignificant, since the
accuracy of all three modified models decreases by less than

TABLE II
ACCURACY IMPACT OF MODEL MODIFICATIONS

Unmodified Modified
Classifier
ACC / TPR/ FPR [%] ACC /TPR/FPR [%]
Inline 99.84 /99.83 / 0.15 99.77 1 99.76 / 0.22
NYU 99.81/99.78 / 0.16 99.81/99.80 / 0.18
ResNet 99.86 / 99.85 / 0.13 99.85/99.82 / 0.12

0.07% in accuracy, if it decreases at all. In the following, we
always refer to the modified models in our experiments.

6) Unsupported Operations: While we can work around the
problem described above with unsupported one-dimensional
convolutional layers, there are additional limitations imposed
by the frameworks.

In detail, embedding layers are not supported by any of
the frameworks (cf. Table I) and feature extraction as used
in the FANCI-based model can only be performed on plain-
text domains. Further, sigmoid functions are not supported
by all frameworks. Therefore, we exclude the execution of
embedding layers, feature extraction, and sigmoid activation
functions from the private inference process.

This implies that the data owner must perform either feature
extraction or embed domain names before secret sharing or
data encryption, and must apply the sigmoid function after the
final inference result has been received and decrypted. While
this setup enables an unbiased evaluation of all frameworks, it
leaks the embedding layers and the feature extraction process
to the data owner in a real-world setting.

Moreover, TF-E and SecureQ8 do not support custom layers
such as the residual layer of the ResNet model. Hence, we only
evaluate the ResNet model in PySyft and MP2ML.

Finally, due to the lack of support for long short-term
memory (LSTM) layers in all frameworks, we exclude the
well-known RNN-based model [12] from our evaluation.

E. Hardware

Our test system consists of an AMD Ryzen 5 3600 CPU
with six cores@3.6GHz and 16GB of RAM. We execute each
model on the CPU because the frameworks do not support
GPU computation. Additionally, we run each framework in a
separate Docker container to ensure a similar overhead.

IV. EVALUATION

In this section, we first provide an overview of the different
evaluations and subsequently present the evaluation results.

A. Evaluation Overview

In a plaintext inference setting, the performance impact of
parameters, such as on the inference latency, is often neglected
because they are usually tuned for the best accuracy. However,
in a privacy-preserving inference setting, inference latency
and communication complexity determine the feasibility of
a model. Thus, foregoing a small accuracy penalty for a
significant reduction in inference latency or communication
complexity can ensure the feasibility of a privacy-preserving

classifier. In this work, we investigate the impact of the embed-
ding dimension, ReL.U activation functions, and max pooling
layers on the inference latency, communication complexity,
and the accuracy.

First, we present the inference latency (i.e., the time delay
between starting the inference and computing the prediction)
and the communication complexity (i.e., the amount of data
that is transmitted between data and model owner) for each of
the various models and frameworks in Section IV-B.

Subsequently, we analyze the effect of the embedding
dimension, ReL.U activation functions, and max pooling layers
on the inference latency and communication complexity in
Section IV-C1, IV-C2, and IV-C3, respectively. We present
the cumulative relative improvement in inference latency and
communication complexity after applying all three proposed
model simplifications in Section IV-C4.

In Section IV-D, we present the impact of all model simpli-
fications on the classification performance (ACC, TPR, FPR).

Finally, in Section IV-E, we measure the relative approxi-
mation error between plaintext predictions and corresponding
private predictions caused by each framework.

In our evaluation, we consider four models and seven
privacy-preserving ML framework configurations. In addition,
there are up to 16 variants per model through a combination
of four different embedding dimensions, two options for acti-
vation functions, and two options for pooling layers. However,
not all 16 variants are applicable to all four models, as some
models do not contain any embedding or pooling layers, which
leads to a total of 298 different privacy-preserving inference
scenarios.

Due to this amount of scenarios and high inference latencies
(of up to 13 min/sample), running every scenario on the
complete test set is infeasible. Hence, we limit the amount of
test samples depending on the inference latency of each sce-
nario. Specifically, we randomly draw 1,000 test samples for
frameworks running in a three-party setting and 100 samples
for two-party settings. Note, reduced sample sizes are only
used for privacy-preserving performance metrics, i.e., infer-
ence latency, communication complexity, and approximation
error. The accuracy evaluation (Section IV-D) is performed on
the entire dataset (cf. Section III-B3).

Moreover, privacy-preserving classifiers operate on secret
shared or encrypted data, i.e., essentially random values. Thus,
the inference computation process is independent of plaintext
domain names, resulting in little variance in the performance
metrics. Consequently, a smaller sample size also enables a
meaningful comparative evaluation.

Lastly, we conduct all evaluations with a batch size of one.
Note that a larger batch size would result in a significantly
higher throughput as there is a constant overhead.

B. Inference Latency & Communication Complexity

In Table III, we present the inference latency and commu-
nication complexity for each framework before applying any
model simplifications (i.e., the embedding dimension is not

TABLE III
INFERENCE LATENCY IN (S) / COMMUNICATION COMPLEXITY IN (KB) FOR EACH MODEL AND FRAMEWORK

Three-Party Setting

Two-Party Setting

Classifier

PySyft TF-E Q8-2 Q8-3 MP2ML Q8-0 Q8-1
Inline 2.282 /152,721 1.341 /158,080 2.071 / 93,363 4.209 / 246,473 | 296.641 / 36,886,810 98.228 / 60,300,025 208.422 / 7,980,211
NYU 6.942 /315,674 3.679 /295,319 2.480/ 176,717 10.288 / 841,378 | 191.371 / 34,614,955 374.646 / 234,501,961 793.289 / 30,842,328
ResNet 9.840 / 431,917 -/- -/ - -/ - 174.789 / 32,983,456 -/ - -/ -
FANCI 0.099 / 159 0.141/ 288 0.598 / 521 0.609 / 966 0.135/ 17,659 0.649 / 29,325 0.863 / 13,454

reduced from 128, ReLLU activations are not removed, and
max pooling layers are not replaced).

All frameworks and models were evaluated on the test sys-
tem (cf. Section III-E), with the exception of Inline, NYU, and
ResNet in the MP2ML framework. The reason for this is the
high RAM requirement of MP2ML exceeding the 16GB RAM
of the test system. To enable a comparison of this framework,
we ran the three models on a compute cluster with 150GB
of RAM. However, lower CPU clock speeds and different
numbers of threads result in a significant difference in infer-
ence latency. To enable a meaningful comparison, we therefore
interpolated the inference latencies for these three models in
the MP2ML framework. While this introduces a non-negligible
error, it affects all MP2ML settings equally, such that only
the absolute inference latency is affected. The communication
complexity is not affected by this and thus accurate.

The inference latency for FANCI is below one second for
all two- and three-party frameworks due to model simplicity.
For Inline, NYU, and ResNet, there is a significant perfor-
mance difference between two- and three-party frameworks.
All three-party frameworks achieve an inference latency of
less than eleven seconds for all models, while the two-party
frameworks perform significantly worse and require up to
13 min/inference. Moreover, MP2ML’s inference latency for
the Inline model is significantly higher than the latency of both
two-party SMPC-based approaches, while MP2ML performs
comparably better for NYU and ResNet. The reason for this
is the high input dimension of the first linear layer in the
Inline model which poses a significantly higher latency impact
in MP2ML’s HE-based approach compared to SecureQS8’s
SMPC-based approaches.

The communication complexity in the two-party setting is
also significantly higher compared to the three-party setting.
The communication complexity for the NYU model is the
highest and ranges for a single data item from 841MB in a
three-party setting to 234GB in a two-party setting. FANCI on
the other hand results in the lowest communication complexity
with only 159kB in PySyft and 29MB in Q8-0.

Generally, the communication complexity of HE-based
approaches is expected to be significantly lower compared
to SMPC-based approaches [36]. However, this is not the
case when comparing MP2ML with Q8-1. The reason for
this is that the embedding layers are evaluated before the
inference process, which leads to high dimensional input data
for privacy-preserving classifiers and thus to large transmitted
ciphertexts. The encoding in the CKKS HE scheme used by
MP2ML requires more space than the corresponding secret

shares in an SMPC setting. In addition, the implemented
CKKS scheme only supports linear operations. For this reason,
MP2ML uses a two-party SMPC protocol to evaluate non-
linear layers, which increases the communication complexity
even further.

Overall, the communication complexity is high, especially
in the two-party setting. In addition, even if we completely ig-
nore the natural network delay, the inference latencies exceed
the limits necessary for real-time detection (405us to 430us).
Thus, additional measures are required to enable the feasibility
of privacy-preserving DGA detection classifiers.

C. Model Simplification Analysis

In this section, we investigate the impact of the embedding
dimension, ReL.U activation functions, and max pooling layers
on the performance of a classifier.

1) Embedding Dimension: We run every model that con-
tains an embedding layer with an embedding dimension of
128, 64, 32, and 16. Higher embedding dimensions may
result in better accuracy, but higher data dimensionality also
increases inference latency and communication complexity.

In the upper part of Table IV, we display the relative
performance impact of an embedding dimension reduction
from 128 to 16. The ResNet model profits most from the
embedding dimension reduction. The inference latency re-
duces by 64% and the communication complexity by 63%
in a three-party setting and by 86% and 79% in a two-
party setting, respectively. The reduction of the embedding
dimension reduces the input dimension of subsequent layers
which saves additional computational cost. The improvements
are significantly higher in a two-party setting than in a three-
party setting as the former requires more communication.

2) ReLU Activation Functions: The ReLLU function is non-
linear and therefore computationally expensive to evaluate
privately. Hence, we investigate the performance impact of re-
placing ReLU activations with the identity function h(x) — z.

We display the relative performance impact of removing
ReLU activations in the second row of Table IV. In the
two-party setting, there are almost no improvements except
for the communication complexity for FANCI in Q8-0 and
for all models in MP2ML. In MP2ML, the communication
complexity reduces by up to 55%. As mentioned earlier,
MP2ML uses a two-party SMPC protocol to evaluate non-
linear layers. By removing ReLU activations, fewer non-
linear calculations have to be performed and therefore fewer
ciphertexts have to be exchanged, which leads to a significant
reduction in communication complexity in MP2ML.

TABLE IV
MODEL SIMPLIFICATION ANALYSIS

L . . Three-Party Setting Two-Party Setting
Simplification | Classifier PySyft TF-E Q82 Q83 MP2ML Q8-0 Q81
Embedding Inline 0.08/0.03 0.06/0.03 0.06/0.01 0.16 / 0.01 0.61 /7 0.40 0.67/0.68 0.64/0.63
Dimension NYU 0.16/0.16 0.18/0.04 0.11/0.01 0.27 7 0.01 0.66 / 0.43 076 /077 0.72/0.72
Reduction ResNet 0.64 / 0.63 -/ - -/ - -/ - 0.86 /0.79 -/ - -/ -

Inline 0.61/043 0.75/045 0.01/0.00 -0.01/0.00 [0.04/0.54 0.00 /0.00 0.00 / 0.00
ReLU NYU 0.45/046 0.34/0.53 0.00/0.00 0.00 / 0.00 0.03/0.28 0.00 /0.00 0.00/0.00
Removal ResNet 0.22/0.24 -/ - -/ - -/ - 0.01/0.55 -/ - -/ -
FANCI 0.71/0.63 0.71/0.68 0.00/0.02 0.00 / 0.10 0.08 7 0.48 0.03/0.37 0.00/0.02
Pooling Layer NYU 034/034 048/040 0.00/-0.18 0.19/0.30 | -0.59/-035 0.05/0.05 0.06/0.06
Exchange ResNet 0.46 / 0.51 -/ - -/ - -/ - -0.35/0.23 -/ - -/ -
Inline 0.68/0.46 0.80/048 0.05/0.01 0.16 / 0.01 0.68 / 0.94 0.67/0.68 0.64/0.64
Cumulative NYU 095/096 0.87/097 0.14/-0.17 0.45/0.30 0.73 7 0.89 0.81/082 0.78/0.78
Improvements ResNet 0.93 /0.94 -/ - -/ - -/ - 0.84 /0.92 -/ - -/ -
FANCI 0.71/0.63 0.71/0.68 0.00/0.02 0.00 / 0.10 0.08 7 0.48 0.03/0.37 0.00/0.02

In the three-party setting, PySyft and TF-E are heavily
affected by the removal of ReLU activations leading to an
improvement of up to 75% in inference latency and 68% in
communication complexity. In contrast, the Q8 approaches are
almost unaffected.

3) Pooling Layers: Similar to the ReLU activation function,
the max pooling operation, which is used by NYU and ResNet,
is non-linear and therefore computationally expensive to eval-
uate. Evaluating a linear average pooling layer can instead
be less computationally expensive. Here, we investigate the
performance impact of replacing max pooling layers with
average pooling layers.

We present the relative performance impact in the third row
of Table IV. In the three-party setting, we achieve improve-
ments for PySyft, TF-E, and Q8-3 of up to 46% and 51% in
inference latency and communication complexity, respectively.
For Q8-2, however, the communication complexity increases
by 18%, suggesting that the linear operations in average pool-
ing layers require more communication than the comparisons
in max pooling layers in this particular protocol.

In the two-party setting, there are slight improvements
for the two QS8-based approaches, but in MP2ML there is
an enormous deterioration in terms of inference latency and
NYU’s communication complexity. The reason for this is that
average pooling layers increase the required multiplicative
depth of the models. This results in an increase in ciphertext
size, which offsets the decreased communication complexity
caused by eliminating the need for SMPC-based evaluation of
max pooling layers. The different effects on the performance
of NYU and ResNet are due to the different number of max
pooling layers used (2 vs. 1), differences in kernel sizes
(2 vs. 3), and the difference in the multiplicative depth caused
by the average pooling layers (8 vs. 6).

While we obtained less promising results for MP2ML, in
theory, the exchange of the pooling layers could pay off with
a smaller input size.

4) Cumulative Performance Improvements: In the bottom
of Table IV, we present the cumulative relative improvements
that are achieved by combining the proposed simplifications.

In the two-party setting, we achieve significant improve-
ments for all frameworks and models of up to 84% in inference
latency and 94% in communication complexity. The FANCI-
based neural network classifier is the fastest due to its encoding
by feature extraction and its model simplicity. It requires
approximately 0.124s (originally 0.135s) and 9MB (originally
18MB) of communication for a single data item in MP2ML.
The next fastest model is ResNet in MP2ML which requires
approximately 28s (originally 175s) and 2.7GB (originally
32.9GB) of communication for private inference.

In the three-party setting, the inference latency is reduced by
up to 95%, while the reduction in communication complexity
is as high as 97% for PySyft and TF-E. Here, FANCI achieves
an inference latency of below one second in all frameworks. In
TF-E, it requires approximately 0.029s and 58kB for private
inference. The Inline model improves slightly in Q8-2. The
NYU model only improves in inference latency and deteri-
orates in communication complexity caused by the pooling
layer exchange. In Q8-3, there are smaller improvements for
Inline while NYU profits significantly. In PySyft and TF-E, In-
line, NYU, and ResNet achieve an inference latency of below
one second, while the inference latency in the Q8 approaches
ranges from 2 - 6 seconds. The fastest model after FANCI is
Inline with only 0.27s latency in TF-E and requires 8.3MB
communication per inference. The NYU model requires 0.47s
per inference but has a lower communication complexity of
only 0.8MB.

Despite these significant improvements, the required infer-
ence latency of 405us to 430us, that is necessary for privacy-
preserving real-time classification, is still not achieved.

D. Classification Performance

While the relative improvements in communication com-
plexity and inference latency are enormous, the impact of the
proposed model simplifications on classification performance
remains to be determined.

In Table V, we present the classification performance of all
models to assess the accuracy penalty caused by the applied
model simplifications. In the following, we mainly use the

TABLE V

CLASSIFICATION PERFORMANCE: ACC/TPR/FPR [%]

Embedding Dimension

32

64

128

99.74 /1 99.98 / 0.50
99.65 / 99.96 / 0.66

99.76 / 99.96 / 0.44
99.69 / 99.98 / 0.60

99.77 1 99.97 1 0.43
99.66 / 99.95 / 0.63

99.77 1 99.96 / 0.42
99.80 / 99.96 / 0.36

99.79 1 99.95 / 0.37
99.80 / 99.98 / 0.38

99.81/99.98 / 0.36
99.83/99.98 / 0.32

99.75/99.93 /1 0.43
99.61 / 99.81 / 0.59

99.71 / 99.90 / 0.48
99.64 / 99.98 / 0.70

99.75 7 99.94 / 0.44
99.68 / 99.89 / 0.53

99.84 /99.98 / 0.30
99.83 /99.95 7 0.29

99.84 /99.94 / 0.26
99.84 /99.92 / 0.24

99.85/99.93/0.23
99.84/99.95/0.27

99.82 /99.94 / 0.30
99.66 / 99.64 / 0.32

99.84 / 99.96 / 0.28
99.72 / 99.86 / 0.42

99.83/99.98 / 0.32
99.73 7/ 99.89 /1 0.43

Classifier Pool ReLU
16
Inline . yes 99.74 /99.96 / 0.48
- no 99.66 /99.97 / 0.65
Ma yes 99.74 /99.93 / 0.45
X ho 99.76/99.91 / 0.39
NYU
Ay yes 99.72/99.90 / 0.46
g no 99.65/99.80 / 0.50
Ma yes 99.82/99.93/0.29
X ho 99.79/99.85/0.27
ResNet
Ay yes 99.80 /99.90 / 0.30
g no 99.68 /99.99 / 0.63
FANCI - yes

98.58 / 99.24 / 2.08
98.02 /97.87/1.83

FPR as a proxy to determine the possible loss in classification
performance as a low FPR is the most important attribute of
a suitable classifier. Hence, we exclude FANCI from further
discussion due to its high FPR (cf. Table V).

Regarding the reduction of the embedding dimension by
its own, a clear tendency towards a deteriorated FPR can be
observed. Removing ReLU activations but keeping the max
pooling layers, results in a significant loss of FPR for Inline.
The FPRs of NYU and ResNet, however, change only slightly
and even improve in some settings. We attribute the significant
drop in Inline’s FPR to the violation of a requirement of
the universal approximation theorem [57] which states that
multilayer neural networks are able to approximate any con-
tinuous function to an arbitrary degree of accuracy, provided
an appropriate architecture and activation function [57]-[59].
Removing ReLU activations cuts all non-linearity from the
Inline model, resulting in a significant loss of approximation
capability [60], thus causing a notable FPR penalty. NYU and
ResNet are not affected here as both models contain additional
non-linearity in the max pooling layers.

Replacing max pooling layers with average pooling layers
results in only a negligible change in the FPR. However,
combining average pooling layers with the removal of ReLU
activations removes any non-linearity from NYU and ResNet
and can yield to an FPR penalty similar to the removal of
ReLU activations in the Inline model.

E. Approximation Error

In Table VI, we present the relative errors between plaintext
predictions and their corresponding private predictions to
provide a notion of the errors caused by each framework.
We average the approximation error over the embedding
dimensions and pooling layers as both parameters have no
effect on the approximation error.

The approximation error of PySyft and TF-E is negligible,
such that a privacy-preserving prediction is essentially equal to
a plaintext prediction. In MP2ML, the approximation error is

TABLE VI
EVALUATION: APPROXIMATION ERRORS

Model ReLU PySyft TF-E MP2ML
Wline e 008% 026% 16.38%

no 0.15% 149% 0.01%

yes 001% 001% 16.12%

NYU no 001% 002% 0.02%
yes 0.01% - 14.11%

ResNet 0 0.01% - 0.24%
yes 002% 002% 14.30%

FANCL 0 002% 002% 001%

significantly increased if a model contains ReLU activations.
This is not intuitive as ReLLU activations discard any values
below zero, thus eliminating potential errors in the inter-
mediate results. We attribute this behavior to the MP2ML’s
implementation of the ReLU activation that approximates the
exact ReLU function.

The error caused by MP2ML is large enough to potentially
affect a classifier’s prediction, depending on the decision
threshold and the classifier’s certainty. However, the authors
of MP2ML conducted an evaluation which showed that the
majority of predictions in a binary classification case are not
affected by this [36].

V. CONCLUSION

Our evaluation showed that implementing state-of-the-art
DGA detection models in existing privacy-preserving frame-
works is not sufficient to construct feasible privacy-preserving
classifiers. In this work, we proposed model simplifications
that achieve a reduction in inference latency of up to 95%,
and up to 97% in communication complexity while causing
an accuracy penalty of less than 0.17%. In particular, the
accumulated reduction is mostly consistent between two- and
three-party settings, and suggests that the proposed simpli-
fications generalize well to other DGA detection models and

privacy-preserving frameworks. For the real-world application,
framework and model-specific optimizations are still required,
and it is suggested to keep a source of non-linearity in a model.

High dimensional data limits the feasibility of privacy-
preserving classifiers. Since the embedding layers cannot be
executed privately in the selected frameworks, large secret
shares or ciphertexts have to be exchanged, especially in
MP2ML. The encoding of the developed FANCI-based neural
network classifier by feature extraction, leads to smaller data
that needs to be exchanged. In addition, the low complexity
of the model, leads to inference latencies under one second
even in the two-party setting. However, this model has too
high an FPR to operate in a real-world scenario. Increasing
the model’s complexity could lead to a lower FPR but also to
a higher inference latency. Removing the embedding layer of
the state-of-the-art deep learning classifiers is not an option
as prior experiments showed a significant loss in ACC and
FPR. However, private evaluation of embedding layers as in
PrivFT [25] is technically possible but not implemented in any
of the investigated frameworks. This would however increase
the computational complexity further, possibly resulting in a
significant increase in inference latency.

To classify all NXDs that occur in a large real-world net-
work, an inference latency of 405us to 430us is required [3],
[4], which is not achieved by any of the classifiers. The
classifiers in the two-party setting are particularly slow. The
fastest model that still achieves an appropriate FPR takes
28s per domain name. In the three-party setting, all of the
classifiers take less than a second, but it is not apparent who
the third party might be as CaaS is usually considered a two-
party setting. Using a larger batch size and DNS caching
would make the classifiers more viable. On the other hand,
we ignored possible network delay in our analysis, which will
increase the inference latency considerably, as huge amounts
of data are exchanged.

All in all, feasibility of privacy-preserving DGA detection
is questionable due to a combination of high computational
complexity and lack of real-world applicability. Future work
is needed to improve DGA models and frameworks, for
example by enabling private evaluation of embedding layers
or by supporting one-dimensional convolutional layers, the
absence of which has a significant impact on all SMPC-based
frameworks.

REFERENCES

[11 K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and
D. 1. Fotiadis, “Machine learning applications in cancer prognosis and
prediction,” Computational and structural biotechnology, vol. 13, 2015.

[2] H. C. Tanuwidjaja, R. Choi, S. Baek, and K. Kim, “Privacy-preserving
deep learning on machine learning as a service - a comprehensive
survey,” IEEE, vol. 8, 2020.

[3] A. Drichel, U. Meyer, S. Schiippen, and D. Teubert, “Analyzing the real-
world applicability of DGA classifiers,” in Conference on Availability,
Reliability and Security. ACM, 2020.

[4] A. Drichel, N. Faerber, and U. Meyer, “First step towards explainable
dga multiclass classification,” in Conference on Availability, Reliability
and Security. ACM, 2021.

[5] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,
W. Lee, and D. Dagon, “From throw-away traffic to bots: Detecting the
rise of DGA-based malware,” in USENIX Security Symposium, 2012.

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

L. Bilge, S. Sen, D. Balzarotti, E. Kirda, and C. Kruegel, “Exposure: A
passive DNS analysis service to detect and report malicious domains,”
in Transactions on Information and System Security. ACM, 2014.

M. Grill, I. Nikolaev, V. Valeros, and M. Rehak, “Detecting DGA
malware using netflow,” in IFIP/IEEE Integrated Network Management,
2015.

S. Yadav and A. L. N. Reddy, “Winning with dns failures: Strategies
for faster botnet detection,” in Security and Privacy in Communication
Systems. Springer, 2011.

S. Schiavoni, F. Maggi, L. Cavallaro, and S. Zanero, “Phoenix: DGA-
based botnet tracking and intelligence,” in Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2014.

Y. Shi, G. Chen, and J. Li, “Malicious domain name detection based on
extreme machine learning,” in Neural Processing Letters, vol. 48, no. 3,
2018.

S. Schiippen, D. Teubert, P. Herrmann, and U. Meyer, “FANCI: Feature-
based automated nxdomain classification and intelligence,” in USENIX
Security Symposium, 2018.

J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant, “Predicting
domain generation algorithms with long short-term memory networks,”
in arXiv:1611.00791, 2016.

B. Yu, J. Pan, J. Hu, A. Nascimento, and M. De Cock, “Character
level based detection of DGA domain names,” in International Joint
Conference on Neural Networks. 1EEE, 2018.

J. Saxe and K. Berlin, “eXpose: A character-level convolutional neural
network with embeddings for detecting malicious URLs, file paths and
registry keys,” in arXiv:1702.08568, 2017.

J. Peck, C. Nie, R. Sivaguru, C. Grumer, F. Olumofin, B. Yu, A. Nasci-
mento, and M. De Cock, “Charbot: A simple and effective method for
evading dga classifiers,” IEEE Access, vol. 7, 2019.

J. Spooren, D. Preuveneers, L. Desmet, P. Janssen, and W. Joosen,
“Detection of algorithmically generated domain names used by botnets:
A dual arms race,” in Symposium On Applied Computing. ACM, 2019.
M. Joye and F. Salehi, “Private yet efficient decision tree evaluation,”
in Data and Applications Security and Privacy XXXII. Springer, 2018.
D. J. Wu, T. Feng, M. Naehrig, and K. Lauter, “Privately evaluating
decision trees and random forests,” Privacy Enhancing Technologies,
vol. 2016, no. 4, 2016.

A. Tueno, Y. Boev, and F. Kerschbaum, “Non-interactive private decision
tree evaluation,” in Data and Applications Security and Privacy XXXIV.
Springer, 2020.

A. Akavia, M. Leibovich, Y. S. Resheff, R. Ron, M. Shahar, and
M. Vald, “Privacy-preserving decision trees training and prediction.” in
European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases, 2020.

T. Maekawa, T. Nakachi, S. Shiota, and H. Kiya, “Privacy-preserving
svm computing by using random unitary transformation,” in Intelligent
Signal Processing and Communication Systems, 2018.

T. van Elsloo, G. Patrini, and H. Ivey-Law, “Sealion: A framework for
neural network inference on encrypted data,” arXiv:1904.12840, 2019.
A. Vizitiu, C. I. Nitd, A. Puiu, C. Suciu, and L. M. Itu, “Applying
deep neural networks over homomorphic encrypted medical data,”
Computational and mathematical methods in medicine, vol. 2020, 2020.
R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in International Conference on
Machine Learning, vol. 48. PMLR, 2016.

A. A. Badawi, L. Hoang, C. F. Mun, K. Laine, and K. M. M.
Aung, “Privft: Private and fast text classification with homomorphic
encryption,” IEEE Access, vol. 8, 2020.

Q. Lou and L. Jiang, “She: A fast and accurate privacy-preserving deep
neural network via leveled tfhe and logarithmic data representation,”
arXiv:1906.00148, 2019.

F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, “Ngraph-he: A
graph compiler for deep learning on homomorphically encrypted data,”
in International Conference on Computing Frontiers. ACM, 2019.

J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in Computer and Communi-
cations Security. ACM, 2017.

B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “Deepsecure: Scal-
able provably-secure deep learning,” in Design Automation Conference.
ACM, 2018.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schnei-
der, and F. Koushanfar, “Chameleon: A hybrid secure computation
framework for machine learning applications,” in Asia Conference on
Computer and Communications Security. ACM, 2018.

T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, and
J. Passerat-Palmbach, “A generic framework for privacy preserving deep
learning,” arXiv:1811.04017, 2018.

M. Dahl, J. Mancuso, Y. Dupis, B. Decoste, M. Giraud, 1. Livingstone,
J. Patriquin, and G. Uhma, “Private machine learning in tensorflow using
secure computation,” arXiv:1810.08130, 2018.

B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim,
and L. van der Maaten, “Crypten: Secure multi-party computation
meets machine learning,” in NeurIPS Workshop on Privacy-Preserving
Machine Learning, 2020.

A. Dalskov, D. Escudero, and M. Keller, “Secure evaluation of quantized
neural networks,” Privacy Enhancing Technologies, vol. 2020, no. 4,
2020.

R. Xu, J. B. Joshi, and C. Li, “Cryptonn: Training neural networks over
encrypted data,” in International Conference on Distributed Computing
Systems, 2019.

F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“Mp2ml: A mixed-protocol machine learning framework for private
inference,” in Availability, Reliability and Security. ACM, 2020.

P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in
USENIX Security Symposium, 2020.

M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation,” in the
Twentieth Annual ACM Symposium on Theory of Computing. ACM,
1988.

M. Keller, “Mp-spdz: A versatile framework for multi-party computa-
tion,” in Computer and Communications Security. ACM, 2020.

R. Cramer, I. Damgard, and U. Maurer, “General secure multi-party
computation from any linear secret-sharing scheme,” in Advances in
Cryptology — EUROCRYPT. Springer, 2000.

A. C.-C. Yao, “How to generate and exchange secrets,” in Symposium
on Foundations of Computer Science, 1986.

R. Cramer, 1. Damgérd, and J. B. Nielsen, “Multiparty computation
from threshold homomorphic encryption,” in Advances in Cryptology
— EUROCRYPT. Springer, 2001.

C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the
aes circuit,” in Advances in Cryptology — CRYPTO. Springer, 2012.
S. Micali, O. Goldreich, and A. Wigderson, “How to play any mental
game,” in Symposium on Theory of Computing. ACM, 1987.

D. Demmler, T. Schneider, and M. Zohner, “ABY - a framework for
efficient mixed-protocol secure two-party computation,” in Network and
Distributed System Security Symposium. Internet Society, 2015.

I. Damgard, V. Pastro, N. Smart, and S. Zakarias, “Multiparty com-
putation from somewhat homomorphic encryption,” in Advances in
Cryptology — CRYPTO. Springer, 2012.

[47]

(48]

[49]

[50]

(51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing,” in Advances
in Cryptology - EUROCRYPT. Springer, 2015.

S. Wagh, D. Gupta, and N. Chandran, “Securenn: 3-party secure com-
putation for neural network training,” Privacy Enhancing Technologies,
vol. 2019, no. 3, 2019.

J. Liu, S. Mesnager, and L. Chen, “Partially homomorphic encryption
schemes over finite fields,” in Security, Privacy, and Applied Cryptog-
raphy Engineering. Springer, 2016.

D. Plohmann, K. Yakdan, M. Klatt, J. Bader, and E. Gerhards-Padilla,
“A comprehensive measurement study of domain generating malware,”
in USENIX Security Symposium, 2016.

Eduroam, “https://www.eduroam.org/,” World wide education roaming
for research and education.

A. Drichel, U. Meyer, S. Schiippen, and D. Teubert, “Making use of NXt
to nothing: Effect of class imbalances on DGA detection classifiers,” in
Conference on Availability, Reliability and Security. ACM, 2020.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,

“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:

https://www.tensorflow.org/

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems, vol. 32. Curran Associates, Inc., 2019.

J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in Cryptology —
ASIACRYPT. Springer, 2017.

B. Yu, D. L. Gray, J. Pan, M. D. Cock, and A. C. A. Nascimento, “Inline
dga detection with deep networks,” in IEEE International Conference
on Data Mining Workshops, 2017.

M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer
feedforward networks with a nonpolynomial activation function can
approximate any function,” Neural Networks, vol. 6, no. 6, 1993.

S. Sonoda and N. Murata, “Neural network with unbounded activation
functions is universal approximator,” Applied and Computational Har-
monic Analysis, vol. 43, no. 2, 2017.

D.-X. Zhou, “Universality of deep convolutional neural networks,”
Applied and Computational Harmonic Analysis, vol. 48, no. 2, 2020.
G. Philipp and J. G. Carbonell, “The nonlinearity coefficient-predicting
overfitting in deep neural networks,” arXiv:1806.00179, 2018.

