—

Hewlett Packard
Enterprise

DATA STAGING PLATFORM
HOW WE AGGREGATE AND ENRICH FORTINET SYSLOG EVENTS

Gabriela Aumayr, Dr. Hugo Hromic

July 14, 2021

AGENDA

e Introduction
e Background
e Data Staging Platform
e architecture
» feed onboarding methodology
* how we Aggregate and Enrich Fortinet Syslog Events
e Demo
e Conclusion and future steps
* Q&A

MOTIVATION

e Scalable processing of cyber security data

e Challenges found in Security Operations Centers (SOC)
* Scalability: high data volume, limited storage for historical data
« High Availability: ingestion, processing and storage must be kept operating
e Data Quality: accuracy of de-duplication, flow stitching, enrichment, field sanitization
e Low-latency Output: short processing time and fast query time
e Security: observability data is sensitive and should be kept protected

e Big Data technologies
* Scalability - distributed computing
» High Availability - replication
e Low-latency output - massive parallel processing
e Quick integration and deployment - container orchestration

| E—

TOOLS STACK

¢ Big Data
» Hadoop: distributed file system and map-reduce framework
 Spark Streaming: distributed streaming framework
» Hazelcast, Hazelcast Jet: distributed in-memory data grid and streaming framework
 Vector: ultra-fast and reliable observability data pipeline
 Kafka: distributed message broker
» Vertica: distributed columnar store

TOOLS STACK IN DSP

¢ Big Data
e Hadoop: distributed file system and map-reduce framework
» Spark Streaming: distributed streaming framework
» Hazelcast, Hazelcast Jet: distributed in-memory data grid and streaming framework
 Vector: ultra-fast and reliable observability data pipeline
 Kafka: distributed message broker
» Vertica: distributed columnar store
¢ Containerization
e Docker in Swarm mode: containerisation platform
 Portainer: container management tool
» HPE Trusted Registry: on-premise registry to store and manage Docker images
e Monitoring
» Prometheus: application metrics
* Loki: distributed log aggregation system
» Grafana: visualisation and alerting

| E—

BACKGROUND

Devices and X
Applications Cyber Security Data

Vulnerability

| Reporting —» 8 88

Risk and Compliance

Inventory

/1111 I

- o le—
— € Data Querying

collct Computer/User Historical

ollecting Filtering " Profiles Events

Parsing —P Deduplication P Aggregation Advanced Threat

— g 8 8
- > 8
Ll

A 4

A 4

Data correlation/ Machine
Rules Learning

A 4

Security Analysts

/1117

e SAPPAN, EU-funded project
» methodology for scalable cyber security data processing using traditional big data
technologies
e modular architecture

| E—

BACKGROUND

Iterative process

e First iteration — Hortonworks, Spark/Scala
e PROS
—Scalable, performant
e CONS
—Shared platform, unstable environment
—At the limit of available resources

e Second iteration — MapR, Spark/Scala
e PROS
— our own platform
e CONS
—non-transferable technology
—different Kafka libraries in MapR
—difficult to maintain

| E—

ua

11117

CLI 3 (o) BLI
@

Cyber Security Data

It

Vulnerability
Intelligence

Collecting
Parsing

Filtering
Deduplication

-

Aggregation

L,

_— >

[=]- 808

Risk and Compliance

Data Querying [€— 888

Advance d Threat

208

Security Analysts

DATA STAGING PLATFORM ARCHITECTURE

=<sizing=>

7 nodes for DEV
7 nodes for PRO

<<monitoring=>

Dedicated instances of
Prometheus and Loki

Ingestion J

<<pushing=>

Via Floating VIP
e
Pushing
External System
Pulling
External System

data
loading

<

<persistence>=

Mid- to long-term storage
(up to 1 year)

Storage J

<<sizing>>

5 nodes in DEV

data
production

5 nodes in PRO

Transport J

consumes

Customer

consumes

Splunk Connector

<<ingestion=>

Early sanitise and validate
data as much as possible

data
consumption

Vertica Cluster

e

Customer

ueries
|- a

ESDW UI

data
loading

data
querying

Processing J

data
production

<=security=>

Mutual TLS authentication
ACL authorization

| E—

=<persistence>>

Short-term retention
(12 hours)

<<sizing>>

and others

3 nodes in DEV/
5 nodes in PRO

queries

Data Layer API

<<imdg>>

Access to processing data
stored in IMDGs

Green are platform functional blocks.
Blue are external systems that are not

part of the platform.

Orange are external systems that are

part of the platform

Purple are active platform components.
Red are supporting components.
Yellow are diagram comments.

DATA STAGING PLATFORM ARCHITECTURE

| E—

<<security>>

Overlay Networking

<<scalability=>

Swarm Orchestrator

<<load-balancing=>

Swarm Routing Mesh

<<high-availability>>
VRRP (Floating VIP)

=<sizing=>

5 nodes in DEV
5 nodes in PRO

<<sizing=>

7 nodes for DEV
7 nodes for PRO

-<<monitoring=>

Dedicated instances of
Prometheus and Loki

<<pushing>>

Via Floating VIP

Pushing
External System

Ingestion)

Server

«stacks

— b «Service»
docker

feed-connector

L)
Pulling
External System

data
loading

<<persistence>>

Mid- to long-term storage
(up to 1 year)

Storage J

manages

Operator / Developer

=<ingestion=>

Early sanitise and validate

Transport J

Server

consumes

Customer

consumes

Splunk Connector

<<security>>

Mutual TLS authentication
ACL authorization

«services L,
docker ™

zookeeper

«sta
schema-re

cks
gistry

Operator / Developer

D

queries

Customer

queries i
<

ESDW UI

«stack»
kafka data
consumption
«stacks

data data as much as possible
production e data data
loading querying
manages
_.-="" Operator / Developer R /
e «stacks
S data-agg-enrich
«service» «stack»
docker data-stitch
«service» «stack»
data keepalived data-loader
production
«service» «stack»
node_exporter portainer agent
Y ey

e |}

<<persistence>>

Short-term retention
(12 hours)

«
metrics / logging

and others

<<sizing=>

3 nodes in DEV
5 nodes in PRO

<<imdg>>

Access to processing data
stored in IMDGs

Data Layer API

Green are platform functional blocks.
Blue are external systems that are not
part of the platform.

Orange are external systems that are
part of the platform.

Purple are active platform components.
Red are supporting components.
Yellow are diagram comments.

FEED ONBOARDING METHODOLOGY IN DSP

e Interaction with stakeholders:
» data feed prioritization
e get sample data
« identify operational characteristics
e user requirements gathering (data fields,
processing steps: aggregation, enrichment, etc.)

e Get infrastructure ready:
e resource allocation
e connectivity: NCS, NCR requests etc.

e Data feed documentation
« established feed template
e all feeds documentation is standardized

| E—

Summary

General

* Name: Fortinet Firewall

* Source: Fortinet Analyzer

« HPE Owner(s): Carnell Tolbert, Patrick MacRoberts

« Portfolio/ApplicationID: N/A (Firewalls do not fall under a single EPRID)

« Admin Contact(s): John Carnicle (Admin), Barry Or (Network team manager)

« Support Channel(s): hpsm-assignment-group: W-INCLV3-ITIO-GT-IPSFW, PDL: gt.network.security@dxc.com, Sample HPSM
ticket: IM30204758

« NCS Request(s): 20910, 21122, NCS Excel Files

Operational

¢ Modes: stream

« Strategies: incremental

¢ Methods: listen

* Protocols: udp

¢ Authentication: n/a

* Storage: vertica

« Vol/Freq: 70K-80K eps , every 60 seconds
« Monitoring type: internal-dsp

Known Consumers

« CDC team (cybersecurity-cdc@hpe.com)
* SIEM team (gcs-cdc-eng@hpe.com)
« ATR&I team (cs-atri@hpe.com, Guarav Shah)

Description
Data: Fortinet Firewall data contains information about which devices are allowed or denied access to which network resources by the
company Fortinet firewall devices.

Purpose: The purpose of the data is to provide firewall traffic information for cyber security investigations.
Source: The data is provided by the FAZ (Fortinet management) devices over UDP to port 8514.

Ingestion

Components

« https://github.hpe.com/OpsEngineering/dsp-syslog-connector

HOW WE INGEST, PROCESS AND STORE FORTINET SYSLOG EVENTS

Ingestion Transport Processing Storage

UDP Load Balancer Fortinet Processor
NGINX Kafka Brokers Multiple Replicas
l Hazelcast Jet

Vertica Cluster

Syslog Connector Vertica Loader
Multiple Replicas Schema Registry Multiple Replicas

Java Application Hazelcast Jet
fortinet-syslog 202539 DL _PRO

fortinet-processed fortinet_processed
dhcp-audit-logging dhcp_audit_logging

UDP port 9514

Metrics / Logging Metrics / Logging Metrics / Logging Metrics

| E—

FORTINET PROCESSING: AGGREGATION AND ENRICHMENT

Fortinet Syslog Event
eventlngestTime
srcip
dstip
dstport
date
time
rcvdbyte
sentbyte

FORTINET PROCESSING: AGGREGATION AND ENRICHMENT

| |
1 1
Fortinet Syslog Event Fortinet Processed Event
eventlngestTime sourcelpv4
srcip sourcelpv4Num
dstip destinationPort
dstport
date eventlngestTime
time $ eventStartTime
rcvdbyte eventEndTime
sentbyte eventBytesIn
eventBytesOut

T_ Mapping to DSP data model

FORTINET PROCESSING: AGGREGATION AND ENRICHMENT

In average, for a 60s window the aggregation ratio is ~67%
(Aggregation Window \
1 1 1
1 1
. . Fortinet Processed Event
Fortinet Syslog Event Fortinet Processed Event sourcelpvé
eventlngfestTlme - sourlcel Z\|<|4 sourcelpvaNum
Sreip keys] SOUTCEIPVAITUM destinationPort
dstip destinationPort
d;tport , " Ti eventlngestTime
.ate m.m() even tgtgeStT,'me eventStartTime
tldrrt;e min() EVen tEa(ro'lme eventEndTime
rcvdbyte max() eventEndTime eventBytesin
sentbyte sum() eventBytesIn
eventBytesOut
sum() eventBytesOut

T_ Mapping to DSP data model L Aggregation

FORTINET PROCESSING: AGGREGATION AND ENRICHMENT

Fortinet Syslog Event
eventlngestTime
srcip
dstip
dstport
date
time
rcvdbyte
sentbyte

L

(Aggregation Window \

In average, for a 60s window, the aggregation ratio is ~67%
Lag to Kafka: average 5-6s, max 37s
Total lag : 47s

Fortinet Processed Event
sourcelpv4

sourcelpv4Num

destinationPort

agg
keys

min() eventingestTime
min() eventStartTime
max() eventEndTime
sum() eventBytesIn

sum() eventBytesOut

Fortinet Processed Event
sourcelpv4
sourcelpv4Num
destinationPort

eventlngestTime
eventStartTime
eventEndTime
eventBytesin
eventBytesOut

Fortinet Processed Event
sourcelpv4
sourcelpv4Num
destinationPort

eventlngestTime
eventStartTime
eventEndTime
eventBytesin
eventBytesOut

sourceHostName

_

Mapping to DSP data model

L Aggregation

destinationHostName

Enrichment with
source and destination
hostnames

DEMO

CONCLUSIONS

Solid foundation for the DSP Future steps
* Distributed, performant » More feeds onboarding
—low latency, good aggregation rate —Palo Alto, Zscaler, Checkpoint
e Modular architecture e Handover to OEIS/OE
e Cloud oriented —Finalize operations playbooks
—easy to deploy/maintain Actionable Intelligence
e Secure —Antonio Neri, Discover 2021:
—encryption and access control —“We are entering the age of insight”
e Observable —“(the future) is not about simply capturing data, but

)) about how fast we can extract value from it”
—metrics, logging

—specialized dashboards (per feed, per process)
e Unified data model
e Well documented and following best practices
—git, code review, release cycles

—“Collecting AND connecting data and applying ML at
the enterprise scale”

| E—

Q&A

