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INTRODUCTION

2

▪ EDR (Endpoint Detection and Response) client software (a.k.a. sensors) heavily relies on 
various system call / event data collection mechanisms to collect comprehensive behavioral 
data from endpoints;

▪ EDR backend data processing pipelines therefore must deal with enormous volumes of 
data. Various approaches exist to address this challenge, like sensor-side or BE-side data 
deduplication / aggregation, whitelisting, misuse / novelty detection logic etc.

▪ The abovementioned data reduction techniques are proven to be effective, but they leave 
an open question about how to find a reasonable tradeoff between the unavoidable data 
loss and the EDR protection’s QoS; namely what needs to be done to keep EDR 
performance, scalability and fidelity in a balanced state. 

The talk presents our work-in-progress effort focusing on endpoint anomaly detection 
facilitating scalable BE side attack detection and response processes for EDR service. 



BACKGROUND MODEL*
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The Process Launch Distribution model (referred to as 
PLD) focuses on detecting anomalous process launch 
events in a computing system;

▪ Operations in computing systems are carried out by so-
called processes, instantiating at run-time software
programs and containing their code, resources,
activities, etc.

▪ Processes start each other in various ways, for example, a 
web browser typically starts a PDF reader to open a PDF 
file found on the Internet.

▪ An action of a parent process starting, or launching, a 
child process is called a process launch event.

▪ Such events can often be used for reliable identification 
of attempts of cybercriminals to compromise computing 
systems.

* Details are available there: https://2020.ares-conference.eu/detailed-program/index.html

https://2020.ares-conference.eu/detailed-program/index.html


The PLD score is always a non-negative number. The lower the PLD score is, i.e., the closer it is 
to zero, the more anomalous the process launch event is from the PLD model point of view:

BACKGROUND MODEL: DETAILS
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Additional info: Das, K. and Schneider, J.: Detecting 

anomalous records in categorical datasets.
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anomalous records in categorical datasets.



BACKGROUND MODEL: EXAMPLE
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INPUT OUTPUT



▪ Module load distribution model:
▪ 1st attribute: process’ file image name;

▪ 2nd attribute: module’ file image name;

▪ Extra details are available in documentation for LoadLibrary, LoadLibraryEx API functions.

▪ Open process and open thread distribution models *:
▪ 1st attribute: Actor process’ file image name;

▪ 2nd attribute: Target process’ file image name;

▪ 3rd attribute: Desired access value;

▪ Extra details are available in documentation for OpenProcess, OpenThread API functions.

ADDED PLD-LIKE AD MODELS (1)

7 * Use updated score calculation logic for three input variables.



▪ File Access distribution model *:
▪ 1st attribute: Actor process’ file image name;

▪ 2nd attribute: Concatenation of access mode and file extension (e.g. ‘READONLY txt’, ‘MODIFY vbs’);

▪ 3rd attribute: top-level directory identifier (e.g. ‘%temp%’, ‘%user%’, ‘%systemroot%’);

▪ Network access distribution model *:
▪ 1st attribute: Actor process’ file image name;

▪ 2nd attribute: Port number (source or destination port for inbound or outbound connection 
respectively); 

▪ 3rd attribute: Domain name of the remote host (if unavailable, IP type / range is used).

ADDED PLD-LIKE AD MODELS (2)

8 * Uses updated score calculation logic for three input variables.



COMBINING THE DATA: EXAMPLE
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New process data snippet (most anomalous)

Open process data snippet (most anomalous)
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OneDrive.exe

cmd.exe

New process data snippet (most anomalous)

Open process data snippet (most anomalous)



COMBINING THE DATA: EXAMPLE
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OneDrive.exe

cmd.exe

0x147A

powershell.exe

New process data snippet (most anomalous)

Open process data snippet (most anomalous)



USED NOTATION
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▪ An elementary data block represents all relevant events (the events that can be assessed by 
available PLD-like AD models) submitted by a single sensor within 24 hours time interval;

▪ A limited set of known positive (having confirmed attack traces) data blocks is available for 
the initial experimentation;

▪ For every positive data block:
▪ All events get categories from corresponding PLD-like models;

▪ For every category (starting from the most anomalous one, i.e. from 90) the events get combined either 
by subject (process ID) or by object (ID of network / file resource).

▪ Next slides present a typical layout for positive samples: for attacks, anomalous events tend 
to be connected in the provenance-like graph form.

AN ATTACK EXAMPLE STUDY
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THRESHOLDS: 70-90
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Threshold: 90 Thresholds: 70, 80



THRESHOLDS: 50-60
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Threshold: 50Threshold: 60



THRESHOLD: 40
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Summary:

▪ Positive feedback from security analysts (the first realistic use case is to apply 
obtained data structures for deeper investigation of initially confirmed incidents);

▪ On-sensor data selection and aggregation, ready for prioritized decision making; 

Open questions:

▪ Missing validation: definition of false positives / negatives, labelled data.

▪ Detection of  ”low and slow” attack patterns;

▪ Decreasing models’ memory footprints;

▪ Applicability of additional PLD-like models (memory, registry, etc.)

CONCLUSIONS AND FUTURE WORK
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