
 
 
 
 
 
 
 

 
Sharing and Automation for 

Privacy Preserving Attack Neutralization 
 

(H2020 833418) 
 

D5.1 Global Model Based on Shared Anonymized Data, First Version 
(M21) 

 
 
 
 
 
 
 
 

Published by the SAPPAN Consortium 
 

Dissemination Level: Public 
 
 
 
 
 
 
 
 

H2020-SU-ICT-2018-2020  – Cybersecurity 
  

Ref. Ares(2021)804912 - 31/01/2021



 

Page 2 of 44 

 SAPPAN – Sharing and Automation for Privacy Preserving Attack Neutralization  

WP5 

D5.1 – Global Model Based on Shared Anonymized Data, First Version 

 Schäfer, 29.01.2021 

  
Document control page 

  
Document file: Deliverable 5.1 Global Model Based on Shared Anonymized Data, First Version 
Document version: 1.0 
Document owner: Sebastian Schäfer (RWTH) 
  
Work package: WP5  
Task: T5.1 Distributed Learning of a Global Model Based on Shared Anonymized Data 
Deliverable type: Report 
Delivery month: M21 
Document status: ☒ approved by the document owner for internal review 

 ☒ approved for submission to the EC 

  

  

Document History: 
 

 

Version Author(s) Date Summary of changes made 

0.1 Arthur Drichel (RWTH), 
Benedikt Holmes (RWTH), 
Sebastian Schäfer (RWTH), 
Alexey Kirichenko (F-Secure), 
Sivam Pasupathipillai (F-Se-
cure), 
Tomas Jirsik (MU) 

2020-12-18 First version of outline including first bullet 
points. 

0.2 Arthur Drichel (RWTH), 
Benedikt Holmes (RWTH), 
Sebastian Schäfer (RWTH), 
Alexey Kirichenko (F-Secure), 
Sivam Pasupathipillai (F-Se-
cure), 
Tomas Jirsik (MU) 

2021-01-08 Finalized outline and structure. 

0.3 Arthur Drichel (RWTH), 
Benedikt Holmes (RWTH), 
Sebastian Schäfer (RWTH), 
Alexey Kirichenko (F-Secure), 
Sivam Pasupathipillai (F-Se-
cure), 
Tomas Jirsik (MU) 

2021-01-25 Most sections complete and ready for review. 

0.4 Arthur Drichel (RWTH), 
Benedikt Holmes (RWTH), 
Sebastian Schäfer (RWTH), 
Alexey Kirichenko (F-Secure), 
Sivam Pasupathipillai (F-Se-
cure), 
Tomas Jirsik (MU) 

2021-01-29 Incorporated feedback. 

1.0 Sebastian Schäfer (RWTH) 2021-01-29 Final version ready to submit. 
 

  

 
Internal review history:  

Reviewed by Date Summary of comments 

Martin Zadnik (CESNET) 2021-01-28 Technical and grammar check. 

 

 

 



 

Page 3 of 44 

 SAPPAN – Sharing and Automation for Privacy Preserving Attack Neutralization  

WP5 

D5.1 – Global Model Based on Shared Anonymized Data, First Version 

 Schäfer, 29.01.2021 

   
  

Executive Summary 

This initial deliverable is one of the two deliverables for the task T5.1 Distributed Learn-
ing of a global model based on shared anonymized data. Its goal is to learn a global 
model, similarly as of the tasks T5.2 and T5.3, but using a different sharing approach. 
Therefore, the deliverables D5.1, D5.3, and D5.3 have some overlaps, especially with 
respect to background, motivation, and the context within SAPPAN. In general, WP5 
focuses on sharing and federation for cyber threat detection and response and this 
task is one of the three tasks focusing on collaborative learning. In this Initial version 
of the deliverable, we present the showcases that we work on in the context of building 
global detection models. We present several showcases and sharing scenarios, in-
cluding planned experiments and initial results. Most showcases are similar to the ones 
developed in WP3, namely DGA Detection, application and host profiling, and anomaly 
detection. In addition to the showcases in WP3, this deliverable also makes use of the 
anonymization techniques developed in T3.4, which will be used to share the data 
required to train the global models. However, since this task is still running, additional 
details regarding anonymization will be included in the deliverable of the task T3.4 as 
well as in the second version of this deliverable for the task T5.1. 
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1 Introduction 

This deliverable for the Task T5.1 has similar goals as the tasks T5.2 and T5.3, hence, 
a large part of its motivation and context is similar to the other tasks. In SAPPAN, one 
of the innovations is to enable privacy preserving sharing of intrusion detection data, 
detection models, and response handling information. The objective of sharing this 
information is to improve the local capabilities of each participating organization by 
collaboration. Another flavor of sharing in the scope of SAPPAN is sharing among a 
cybersecurity service provider or vendor and various user groups of its customer or-
ganizations. In WP3, one of the tasks is to develop local detection and response mech-
anisms. In WP5, we want to utilize these mechanisms on the global level to improve 
them using different sharing mechanisms. 

This deliverable focuses on building global detection models based on shared anony-
mized data. The idea is to collect data, prepare training data for machine learning mod-
els on the local level, anonymize it, and share it to the global level. If this is done by 
multiple parties, this global dataset can be used to build global detection models with 
increased accuracy or robustness compared to the local models. Throughout the first 
three tasks of WP5 we focus on the showcases for which we developed local detection 
mechanisms, as well as some additional ones. These mechanisms include machine 
learning models, process mining models, as well as statistical models. In the initial 
version of this deliverable, we describe the experiments and approaches to build global 
models based on shared local data. For some of the experiments we already have 
initial results. The final results will be presented in the second version of this Delivera-
ble. 

This document is structured as follows. First, we briefly outline the context of the task 
T5.1 in the overall scheme of the SAPPAN project. Next, we describe the general idea 
of this task in more detail, discuss privacy for machine learning models, and afterwards 
describe the different showcases including different approaches for building global de-
tection models. First, we present the showcase of DGA detection including three shar-
ing scenarios and initial results of our experiments. Next, we present our planned ex-
periments for application and host profiling, followed by the showcase of anomalous 
behavior detection. Finally, we conclude this deliverable with a summary and a plan of 
our future work. 
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2 SAPPAN Context  

The context for building a global model in SAPPAN is similar for the first three tasks in 
WP5. Hence, the following paragraph can also be found in the Deliverables D5.3 and 
D5.5. 

 

Figure 1: SAPPAN scheme regarding local and global response and recovery. 

The overall scheme for sharing, detection, and response in SAPPAN is shown in Fig-
ure 1. The top half of the scheme describes the detection components, and the bottom 
half - the response components, while the left half corresponds to the local level, and 
the right half - to the global level. The goal of WP5 is to implement the global level with 
respect to sharing of data and models, building global models for detection, sharing of 
response and recovery information, as well as supporting visualization. The tasks T5.1, 
T5.2 and T5.3 include the development of global models for detection, based on sev-
eral approaches. The general idea is to utilize the data and models developed in the 
task T3.3 on the local level by sharing them among multiple organizations to build 
global detection models. The goal is to end up with global detection mechanisms that 
are superior to the local ones. Another flavor of sharing in the scope of SAPPAN is 
sharing among a cybersecurity service provider or vendor and various user groups of 
its customer organizations. In such cases, we aggregate data or local attack detection 
models built in individual endpoints. Key problems with respect to sharing are, of 
course, privacy and efficiency, which are tackled by an assortment of approaches in-
vestigated in T5.1, T5.2 and T5.3. The approaches range from sharing of anonymized 
data, to sharing of only pre-trained models, to replacing sharing by other techniques. 
We apply these techniques to several showcases similar to those described in WP3 in 
order to build global detection models with adequate recall and precision and providing 
certain levels of privacy and efficiency, including cost-efficiency. For that, we will use 
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 anonymization techniques developed in the task T3.4 based on the privacy require-
ments described in the task T2.2. 

For task T5.1, we develop approaches to building global models based on shared 
anonymized data. The first challenge is to anonymize the data in a way that eliminates 
all privacy risks but still preserves enough information to build a useful global model. 
The second goal is to use the shared data from multiple organizations to create a 
model superior to the local ones, e.g. with increased accuracy. 

 

3 Distributed Learning of a Global Model Based on Shared Anony-
mized Data 

This deliverable focuses on the creation of a global detection model based on shared 
anonymized data in order to centralize the detection that is applied at the local level in 
WP3 to the global level (WP5). To this end, data from several organizations is com-
bined to detect attacks that are not detectable in a single organization alone, while 
respecting the privacy requirements of individuals and organizations. Leveraging 
shared local knowledge enables the identification of common attack patterns and prop-
erties on a global level. This gained knowledge enables us to reduce the false positive 
ratio by creating fitting detection models. 

In D5.1, we share anonymized data which is the most simple and general form of 
knowledge distribution compared to the deliverables D5.3 (global model based on 
shared local models) and D5.5 (global model without sharing local models) which re-
quire trained machine learning models for either sharing the model itself or for sharing 
intelligence derived from a model (e.g. model predictions in the teacher-student set-
ting). Thus, in this deliverable we are able to leverage anonymized data sharing in 
order to increase the performance of various detection types not just those based on 
traditional machine learning. 

In order to investigate the benefit of private information sharing we make use of the 
following three use cases which were already defined in D3.4 (Algorithms for Analysis 
of Cybersecurity Data): 

• Domain Generation Algorithm (DGA) Detection 
• Application and Host Profiling 
• Anomalous Behavior Detection 

 Privacy 

The following briefly describes the landscape of privacy attacks against machine learn-
ing, followed by a short discussion about which of these attacks are relevant to this 
deliverable. The former part will be the same in all three deliverables D5.1, D5.3 and 
D5.5. Unwillingly disclosing private or sensitive information is in most cases inherent 
to the useful distribution of knowledge, independent of whether the knowledge is 
shared in the form of a data set or a decision model. Depending on the sharing scenario 
and on the form of knowledge, different attacks become feasible. The so-called infer-
ence attacks attempt to deduce sensitive information about data sets or models from 
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 their statistical characteristics and how the sets and models are processed. These in-
ference attacks are, among others, listed in Figure 2 which describes the attack land-
scape in the context of machine learning classifiers. We consider the following nota-
tion: The parameters Φ of a K-discriminative classifier F with domain X and codomain 
Y={1,...,K} are trained on a labeled data set D={(xi,yi)i=1,...,d} as a subset of  X × Y drawn 

from unknown distribution D ~ D. Trained model F represents a function that computes 

probabilities of class membership as follows: 

 

or just the predicted class as such: 

 

 

Figure 2: Privacy attack landscape in machine learning. 

When restricting the view to the sharing scenarios in this deliverable, which is the shar-
ing of (anonymized) data for classification models, the relevant attack class is the Data 
Inference class. This especially includes Membership Inference [34] and Property In-
ference [33] as well as Input Inference attacks [32]. In the former, the participation of 
an individual sample, or a group of samples, in a data set is to be determined while in 
the latter either the input into the feature extractor of a feature-based or a deep learning 
classifier or the input to a classifier model is inverted with the goal to reconstruct sam-
ples from shared output data. The other attack classes are not relevant to this deliver-
able. Especially Poisoning attacks [38] will not be addressed as we consider the hon-
est-but-curious attacker model. Similarly, Model Inference [35], Adversarial Examples 
[37] and Side channel attacks [36] are not relevant to this deliverable. Anonymization 
techniques, privacy-preserving training algorithms and other measures allow to shrink 
the attack surface or the feasibility of an attack. A privacy evaluation is demonstrated 
on the DGA showcase: For each DGA sharing scenario, we evaluate the privacy leak-
age by measuring the success of the relevant attacks. 
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  Domain Generation Algorithm (DGA) Detection 

We use the Domain Generation Algorithm (DGA) detection use case to analyze and 
compare the benefit of private data sharing within the deliverables D5.1 (global model 
based on shared anonymized data), D5.3 (global model based on shared local mod-
els), and D5.5 (global model without sharing local models). In addition, we investigate 
the privacy implications caused by data sharing for this use case in all three delivera-
bles. As a consequence, the three deliverables share the same texts for sections that 
include general information such as DGA detection background, state-of-the-art clas-
sifiers, or parts of the evaluation setup. However, sections that depend on the different 
sharing scenarios, such as the actual evaluation and the privacy study, are listed indi-
vidually for each deliverable. 

3.2.1 Background 

We presented DGA detection in D3.4 (Algorithms for Analysis of Cybersecurity Data) 
in detail. Therefore, we only briefly discuss the most important aspects in this deliver-
able. 

Modern botnets rely on DGAs to establish a connection to their command and control 
(C2) server. In contrast to using individual fixed IP-addresses or fixed domain names, 
the communication attempt of DGA-based malware is harder to block as such a mal-
ware generates a vast amount of algorithmically generated domains (AGDs). The bot-
net herder is aware of the generation scheme and thus is able to register a small subset 
of the generated domains in advance. The bots, however, query all generated AGDs, 
trying to obtain the valid IP-address for their C2 server. As most of the queried domains 
is not registered, the queries result in non-existent domain (NXD) responses. Only the 
domains that are registered by the botnet herder in advance resolve successfully to a 
valid IP-address of the C2 server. 

The occurring NXDs within a network that are caused by the non-resolvable queries 
can be analyzed in order to detect DGA activities and thereby to take appropriate coun-
termeasures even before the bots can be commanded to participate in any malicious 
action. This detection is, however, not trivial, since NXDs can also be the product of 
typing errors, misconfigured or outdated software, or the intentional misuse of the DNS 
e.g. by antivirus software. In the following, we refer to this detection in which we sepa-
rate benign from malicious domain names as the DGA binary classification task. 

In addition to this binary classification task, it is useful to not only detect malicious 
network activities but also to attribute the malicious AGDs to the specific DGAs that 
generated the domain names. This enables the malware family used to be narrowed 
down and targeted remediation measures to be taken. In the following, we refer to this 
classification as the DGA multiclass classification task. 

In the past, several approaches have been proposed to detect DGA activities within 
networks. These approaches can be split into two groups: contextless and context-
aware approaches. In SAPPAN, we focus on contextless approaches (e.g. [2, 3, 4, 5, 
6, 7]), as they entirely rely on information that can be extracted from a single domain 
name for classification. Thereby, they are less resource intensive and less privacy in-
vasive than context-aware approaches (e.g. [8, 9, 10, 11, 12, 13]) that depend on the 
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 extensive tracking of DNS traffic. Even though the classification of the contextless ap-
proaches relies solely on the domain name, they are able to compete with the context-
aware approaches and achieve state-of-the-art performance [2, 3, 5, 6, 7]. 

A variety of different types of machine learning techniques have been proposed for the 
classification of domain names which can be divided into two groups: feature-based 
classifiers (e.g. [3, 8]) and deep learning (featureless) classifiers (e.g. [2, 5, 6, 7]). While 
the deep learning classifiers outperform the feature-based approaches in terms of clas-
sification performance [5, 6, 14, 15, 16], their predictions cannot be explained easily. 
For example, the predictions of a decision tree can easily be traced back to the indi-
vidual features used to classify a domain name. Such a simple explanation is not pos-
sible for the predictions of a deep learning model. However, feature-based approaches 
rely on specific features that are hand-crafted using domain knowledge. The engineer-
ing of these features requires much more effort compared to the usage of deep learning 
classifiers where all important information has to be encoded and provided to the 
model. Moreover, after the feature engineering the best combination of features has to 
be selected which is not a trivial task. 

While the feature-based and deep learning based approaches differ in their classifica-
tion capabilities, they might also provide different privacy guarantees when trained on 
shared private data. Thus, we evaluate and compare feature-based as well as deep 
learning based approaches. 

In our evaluation, we include classifiers which were developed within the SAPPAN 
project. In detail, we include the two ResNet-based classifiers [17] that we introduced 
in deliverable D3.4 (Algorithms for Analysis of Cybersecurity Data). There, we demon-
strated that our classifiers achieve better classification scores (f1-score/false positive 
rate) than the state-of-the-art classifiers described in related work. Note, to counteract 
the explainability problem of deep learning classifiers we developed a visual analytics 
system [18] in SAPPAN which tries to bridge the gap between the predictions of deep 
neural networks and human understandable features. 

3.2.2 Selected State-of-the-Art Classifiers 

In the following, we present several state-of-the-art classifiers which we use in different 
sharing scenarios to (1) measure the benefit of private data sharing in terms of classi-
fication performance and (2) analyze the provided level of privacy of the collaboratively 
trained classifier.  

First, we present the currently best contextless feature-based approach for DGA binary 
classification. We then continue with different types of deep learning classifiers includ-
ing convolutional (CNNs), recurrent (RNNs), and residual neural networks (ResNets). 

FANCI 

Schüppen et al. [3] proposed a system called Feature-based Automated NXDomain 
Classification and Intelligence (FANCI). It is capable of separating benign from mali-
cious domain names. FANCI implements an SVM and an RF-based classifier and 
makes use of 12 structural, 7 linguistic, and 22 statistical features for DGA binary clas-
sification. The authors of FANCI state that it uses 21 features, but feature #20 is a 
vector of 21 values, resulting in 41 values in total. The 41 features are extracted solely 
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 from the domain name that is to be classified. Thus, FANCI works completely context-
less. FANCI does not incorporate DGA multiclass classification support. 

Endgame 

Woodbridge et al. [6] proposed two RNN-based classifiers for the DGA binary and 
multiclass classification. Both classifiers incorporate an embedding layer, a long short-
term memory (LSTM) layer consisting of 128 hidden units with hyperbolic tangent ac-
tivation, and a final output layer. The last layer of the binary classifier is composed of 
a single output node with sigmoid activation while the last layer of the multiclass clas-
sifier consists of as many nodes as DGA families are present. We denote the binary 
classifier by B-Endgame and the multiclass classifier by M-Endgame in the following. 

NYU 

Yu et al. [7] proposed a DGA binary classifier that is based on two stacked one-dimen-
sional convolutional layers with 128 filters for DGA binary classification. We refer to 
this model as B-NYU in the following. We additionally adapted the binary model to a 
multiclass classifier by interchanging the last layer similarly to the M-Endgame model. 
Additionally, we use Adam [19] as optimization algorithm and the categorical cross-
entropy for computing the loss during training. We refer to the multiclass enabled model 
as M-NYU in the following. 

ResNet 

In the context of SAPPAN we developed binary and a multiclass DGA classifier based 
on ResNets [17]. We presented all details as well as a comparative evaluation with the 
state-of-the-art in deliverable D3.4 (Algorithms for Analysis of Cybersecurity Data). 
ResNets make use of so-called skip connections between convolutional layers which 
build up residual blocks. These blocks allow the gradient to bypass layers unaltered 
during the training of a classifier and thereby effectively mitigate the vanishing gradient 
problem [20, 21]. Our proposed binary classifier, B-ResNet, consists of a single resid-
ual block with 128 filters per convolutional layer while our proposed multiclass classifier 
M-ResNet has a more complex architecture of eleven residual blocks and 256 filters 
per layer. 

Class weighting 

Tran et al. [5] showed that the model of Woodbridge et al. [6] is prone to class imbal-
ances which reduce the overall classification performance of the DGA multiclass clas-
sifier. The authors mitigate the effect of class imbalances by using the proposed class 
weighting: 

 

The class weights control the magnitude of the weight updates during the training of a 
classifier. The rebalancing parameter γ denotes how much the dataset should be re-
balanced. Setting γ = 0 makes the model behave cost-insensitive, setting γ = 1 makes 
the classifier treat every class equally regardless of the actual amount of samples per 
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 class included in the training set. Tran et al. empirically determined that γ = 0.3 works 
well for DGA multiclass classification. In all our experiments we thus use γ = 0.3 when 
working with cost-sensitive models. We denote deep learning models which incorpo-
rate class weighting with the suffix “.MI”. 

3.2.3 Evaluation Setup 

The main goals of our evaluation are (1) to determine whether we can improve the 
classification performance by leveraging different approaches for private information 
sharing, (2) to quantify the level of privacy after enabling privacy-preserving tech-
niques, and (3) to quantify the loss in utility after enabling privacy-preserving tech-
niques. 

For the deliverables D5.1, D5.3, and D5.5 we use the same evaluation setup (i.e. the 
same classifiers and datasets) in order to guarantee comparability of different infor-
mation sharing scenarios for the use case of DGA detection. 

Data Sources 

In total, we use five different data sources, four for obtaining benign data and one for 
malicious data. 

Malicious data 

We obtain malicious domains from the open-source intelligence feed of DGArchive [22] 
which contains more than 126 million unique domains generated by 94 different known 
DGAs. We make use of all available data up to 2020-09-01. 

Benign data 

We obtain benign labeled NXDs from three different sources, namely from networks of 
CESNET, Masaryk University, and RWTH Aachen University. For data obtained from 
each of these sources we perform a simple pre-processing step in which we remove 
all duplicates, cast every domain name to lowercase (as the DNS operates case-in-
sensitive), and filter against our malicious data obtained from DGArchive to clean the 
data as far as possible. 

Additionally, we remove the intersection of all obtained samples from two of our benign 
data sources, namely from CESNET and Masaryk University. The reason for this is 
that the networks of both parties are interconnected and the recording period for data 
collection overlaps. Note, thereby we are also removing samples from both data 
sources which would naturally be present in both networks even when they were not 
interconnected. Such samples could be common typos of popular websites. This issue 
could have an effect on classification performance of classifier when samples of these 
networks are used for training or classification. However, since we record NXDs, we 
filter significantly fewer samples than if we were to record resolving DNS traffic. Thus, 
this effect could only have a negligible influence on the classification performance, but 
this has yet to be investigated. In the following we list the recording periods and the 
amount of unique samples obtained from each source for benign data. 
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• CESNET – Recording from 2020-06-15, 361995 samples 
• Masaryk University - One-month recording (2020-05-15 - 2020-06-15), 

7973807 samples  
• RWTH Aachen University – One-month recording of September 2019, 

26008295 samples 

3.2.4 Sharing Scenarios 

In each deliverable (D5.1, D5.3, D5.5), we investigate different sharing scenarios for 
the use case of DGA detection. In D3.6 (Cybersecurity Data Abstraction), the set of 
benign training samples has been identified as the main privacy-critical aspect of this 
use case. Thus, we focus in the following on the sharing of private benign labeled data. 

In context of WP5, we started evaluating collaboratively trained global models without 
sharing anonymized data or local models (D5.5). Thus, we are able to present initial 
evaluations in D5.5. For this Deliverable D5.1 we developed three different sharing 
scenarios which we will evaluate in the final version of this deliverable. We present the 
three different sharing scenarios that we plan to evaluate in the following: 

1. Sharing of anonymized domain names using the URL generalization tech-
nique developed in D3.6 

As a part of the deliverable D3.6 (Cybersecurity Data Abstractions - Initial Version), a 
Python commandline tool has been developed to transform URLs into abstracted 
pseudo-URLs. These resulting abstractions of URLs do not contain privacy-critical in-
formation anymore, but are still suitable to be used as training data for machine learn-
ing, as shown by the results of experiments that have been presented in D3.6. The 
scope of D3.6, however, was set to sharing of trained classifiers. For an attacker, this 
means that there are two complicating factors for the extraction of privacy-critical infor-
mation: The abstraction of the URLs and the extraction of training data from the clas-
sifier. Since this deliverable considers sharing of training data, the second factor does 
not apply anymore. We consequently solely rely on the abstraction of training data.  

2. Sharing of extracted features of feature-based approach FANCI 

In this scenario, we utilize FANCI’s feature extraction method as a form of data anon-
ymization. This type of data anonymization will have no impact on the classification 
performance of feature-based classifiers compared to the models which were trained 
using non-anonymized data (i.e. domain names in cleartext). Other anonymization 
techniques might have a negative impact on the classification performance. However, 
it is unclear whether feature extraction is an appropriate approach for data anonymiza-
tion. Thus, in this deliverable we perform an extensive study investigating the privacy 
implications of using this approach. 

3. Sharing of first-n-layers (feature extractor) of deep learning classifiers 

Based on the previous scenario, we designed an approach for sharing extracted fea-
tures in the context of deep learning based classifiers. We assume that the first-n-
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 layers of a deep neural network are used as a sort of feature extractor while the rear 
layers are used for the actual classification. 

In Figure 3 we display such a layer partition.  

 

Figure 3: Partition of a neural network classifier in feature-extractor and classification layers. 

Every party that is participating in the collaborative training of a classifier in this sce-
nario trains a local DGA detection model using their own private data. Thereafter, each 
party is able to share either the feature extractor (i.e. the classifier’s first-n-layers) or 
data that is anonymized by feeding domain names to the feature extractor.  

Depending on which information is shared a different classification performance and 
privacy guarantees can be achieved. In this deliverable we will investigate which shar-
ing scenario makes the most sense in terms of classification performance and privacy. 

A possible approach for combining the feature extractors of different neural networks 
belonging to different parties can be seen in Figure 4. 
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Figure 4: Approach for combining feature extractors of different neural networks and parties. 

3.2.5 Privacy Analysis 

Quantifying the success any of the Input Inference attacks requires a distance (or sim-
ilarity) metric on the space of strings which is a superset of the domain space. Here, 
we restrict ourselves to the family of edit distances, that each compute a minimum-
change distance between two strings by considering character insertions, deletions, 
substitutions and sometimes the special case of (adjacent) character transpositions. 
Table 1 lists common edit distances and gives an overview of their properties. 

Edit Distance 
Substi-
tution 

Inser-
tion 

Deletion 
Transpo-
sition 

Drawbacks 

Hamming Yes No No No 
Only for strings of 
equal length 

Jaro-Winkler No No No Yes 
Does not fulfil trian-
gle inequality 

Longest-Common-Subsequence No Yes Yes No No substitution 

Levenshtein Yes Yes Yes No - 

Damerau-Levenshtein Yes Yes Yes Yes  
(adjacent) 

- 

Table 1: Overview of edit distances. 
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 As reconstructions may differ in length, the Hamming distance is not suitable here. The 
Jaro-Winkler distance does not fulfill the triangle-inequality, hence it is by definition not 
a mathematical metric. The (Damerau-)Levenshtein distance seems a better choice 
than the Longest-Common-Subsequence metric because the latter does not consider 
character substitutions. The Levenshtein distance computes the minimum amount of 
edit operations (insertion, deletion, substitution) to transform one string into the other. 
The continued Damerau-Levenshtein distance also respects the case in which two ad-
jacent characters are transposed instead of accounting two character substitution ed-
its. 

Sharing of Anonymized Domain Names using the URL Generalization Technique 
Developed in D3.6 

Since the privacy guarantee provided by the abstraction of URL elements except for 
the domain is very intuitive, it is not considered further. For the domain, however, the 
privacy-guarantee is highly dependent on the chosen parameters. To get a better im-
pression of the suitability of chosen parameters, the commandline tool has been ex-
tended to include methods which perform attacks on abstracted domains. These meth-
ods allow to get an impression of the expected computation time and accuracy of at-
tacks, and hence, provide a way to test the suitability of chosen parameters. 

In the context of sharing anonymized domain names, the tool generates bitstrings for 
the domain names in a similarity-preserving way, utilizing an approach based on Bloom 
filters that originally comes from the area of privacy-preserving record linkage [1]. De-
tails can be found in D3.6. For the transformation of domains into the Bloom filters, two 
parameters are of crucial importance: The size of the Bloom filter and the amount of 
hash functions used. The combination of both determines the proportion of bits that 
are set in the Bloom filter, sensitive to the length of the input domain. For the chosen 
approach, sparse Bloom filters (very low proportion of ones) do not provide good pri-
vacy-guarantees, whole too dense ones (very high proportion of ones) have a negative 
impact on the classifiers training on them. The tool allows to test such configurations 
and to find sweet-spots in the parameter assignment. For example, it can be used to 
identify suitable intervals of domain lengths, for which different parameter values are 
then chosen. It is to be noted that overlaps of ranges should be avoided to preserve 
utility of machine learning models trained on the abstracted domains, i.e., for each 
interval of domain lengths with different parameters, the length of the resulting Bloom 
filter should change as well. 

Sharing of Extracted Features of Feature-based Approach FANCI 

The FANCI classifier is trained only on labeled domain samples and is agnostic about 
the context of the real-world DNS connection being made. Additionally, it uses only a 
small amount of distinct features (45) to solve the binary classification problem of dis-
tinguishing benign and malicious domains. Thus, FANCI is highly capable while being 
frugal towards its required input, which immediately relates to FANCI's attack surface. 
Due to this small attack surface, FANCI (or its feature extractor respectively) is chosen 
to be evaluated here as a representative for feature-based approaches in the context 
of sharing data for DGA detection. 

FANCI consists of (1) a feature extractor which computes the 45 relevant statistical 
and structural features from domain names and (2) the classifier which operates on 
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 these feature vectors. FANCI feature vectors offer a reduced/compressed representa-
tion of the domain samples and are, in the sharing scenario, accompanied by the re-
spective binary labels of each sample. The main goal of this privacy analysis is to 
evaluate whether the FANCI feature extractor guarantees sufficient privacy, i.e., 
whether or not it is possible to draw inferences from a FANCI feature vector about the 
actual domain name, or from a batch of feature vectors about the membership of cer-
tain domain names respectively. 

Threats 

An adversary with access to the public FANCI feature extractor FE and a shared batch 
of FANCI feature vectors, including the corresponding labels, may be capable of exe-
cuting the following attacks: 

• Reconstruction: Determine which domain name sample x is likely represented 
by a certain feature vector FE(x) 

• (Group) Membership Inference: There are different groups inside the set of be-
nign samples for which membership could reveal information about software 
usage on the side of the owner of the shared data set. 

For the Reconstruction attack, a (1) manual and a (2) deep learning reconstruction 
approach are investigated, that each attempt inverts the functionality of the FANCI 
feature extraction. This shall give insight whether sharing of FANCI features can be 
considered with sufficient privacy preservation. 

FANCI Feature Extractor and Feature Vectors 

The FANCI feature extractor is publicly available, since it is required for public use. 
The official implementation of the FANCI feature extractor, as given by the source in 
the respective paper, computes a vector with 45 statistical and structural features for 
each domain name.  FANCI feature vectors offer a reduced/compressed representa-
tion of the domain samples. Table 2 gives a description of the 45 features on the toy-
example domain "dga.b0tn3t.co.uk", or details refer to [3]. 

# Feature Name 
Example 
Value 

Data 
Type 

Choices Normalization Factor 

0 length 16.0 int 253 253 

1 1_part 0.0 bool 2 1 

2 2_part 1.0 bool 2 1 

3 3_part 0.0 bool 2 1 

4 4_part 0.0 bool 2 1 

5 vowel_ratio 0.1428 float DSF-LEN+1 1 

6 digit_ratio 0.2222 float DSF-LEN+1 1 
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 7 contains_ipv4_addr 0.0 bool 2 1 

8 contains_digits 1.0 bool 2 1 

9 has_valid_tld 1.0 bool 2 1 

10 contains_one_char_subdomains 0.0 bool 2 1 

11 contains_wwwdot 0.0 bool 2 1 

12 subdomain_lengths_mean 4.5 float DSF-LEN 253 

13 prefix_repetition 0.0 bool 2 1 

14 char_diversity 0.8888 float DSF-LEN 1 

15 contains_subdomain_of_only_digits 0.0 bool 2 1 

16 contains_tld_as_infix 0.0 bool 2 1 

17 1_gram_std 0.3307 float FIXED 1_gram_max 

18 1_gram_median 1.0 float A 1_gram_max 

19 1_gram_mean 1.125 float FIXED 1_gram_max 

20 1_gram_min 1.0 float DSF-LEN+1 1_gram_max 

21 1_gram_max 2.0 float DSF-LEN 1_gram_max 

22 1_gram_perc_25 1.0 float A 1_gram_max 

23 1_gram_perc_75 1.0 float A 1_gram_max 

24 2_gram_std 0.0 float FIXED 2_gram_max 

25 2_gram_median 1.0 float A 2_gram_max 

26 2_gram_mean 1.0 float FIXED 2_gram_max 

27 2_gram_min 1.0 float DSF-LEN+1 2_gram_max 

28 2_gram_max 1.0 float DSF-LEN 2_gram_max 

29 2_gram_perc_25 1.0 float A 2_gram_max 

30 2_gram_perc_75 1.0 float A 2_gram_max 

31 3_gram_std 0.0 float FIXED 3_gram_max 

32 3_gram_median 1.0 float A 3_gram_max 

33 3_gram_mean 1.0 float FIXED 3_gram_max 
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 34 3_gram_min 1.0 float DSF-LEN+1 3_gram_max 

35 3_gram_max 1.0 float DSF-LEN 3_gram_max 

36 3_gram_perc_25 1.0 float A 3_gram_max 

37 3_gram_perc_75 1.0 float A 3_gram_max 

38 hex_part_ratio 0.0 float DSF-LEN+1 1 

39 underscore_ratio 0.0 float DSF-LEN+1 1 

40 alphabet_size 8.0 int A=38 38 

41 shannon_entropy 2.9477 float ~194 log2(alphabet_size) 

42 ratio_of_repeated_chars 0.125 float A+1 1 

43 consecutive_consonant_ratio 0.4444 float DSF-LEN+1 1 

44 consecutive_digits_ratio 0.0 float DSF-LEN+1 1 

Table 2: Features extracted by the open source implementation of the FANCI feature ex-tractor. 
Example values are given for example domain 'dga.b0tn3t.co.uk'.  Choices describes the amount 
of unique values a feature can take on. Normalization factor is the value used to normalize the 
feature value to the range [0, 1]. 

The original work about FANCI considers domains with a maximum length of 253 char-
acters (in accordance with RFC 1035 [23]) and a set of 39 valid characters ('a-z' + '0-
9' + '.-_'). Although the character '_' is not legitimate according to RFC 1035, it appears 
in some malicious domains samples. FANCI extracts features from the D(ot-and)-
S(uffix)-F(ree), short DSF, part of the domain name which excludes the top-level do-
main and all dots between subdomains. The length of the DSF (DSF-LEN) can easily 
be reconstructed by the following observation: `DSF-LEN = alphabet_size / char_di-
versity = alphabet_size / (alphabet_size / DSF-LEN)`. The alphabet size for the DSF 
is A=38, as the dot is already excluded. 

To comprehend the complexity- and dimensionality reduction of the feature extractor, 
the following plot in Figure 5 displays slight overestimations of the in- and output space 
sizes of the feature extractor for increasing domain lengths. The input space is the 
space of domain names and the output space the of possible feature vectors for that 
length. The reduction factor (red line) displays the size relation between the two 
spaces, more specifically by how much the input space is larger than the output space. 
For numerical reasons the plot ends early at 160 characters. While the output space 
size saturates, the input space grows exponentially with increasing domain length, as 
does the reduction factor. 
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Figure 5: An overestimation of the sizes of both input and output spaces of the FANCI feature 
extractor over varying length of the original domain name. Red plot de-scribes the reduction, 
i.e., by how much the input space is larger than the out-put space. 

The overestimation of both space sizes is performed as follows. Under the assumption 
of a minimum TLD of length 2 a separating dot and a minimum DSF-LEN of 1, the 
minimum domain length theoretically is 4 characters long. With 39 characters and a 
domain length 4 ≤ L ≤ 253, the domain name space size is given by: 39L. The size of 
the feature vector space for a fixed length L can be computed as the multiplication of 
the amount of possible value choices for each feature. The maximum DSF-LEN can 
be overestimated as L-3 when ignoring the separating dots. Boolean and integer fea-
tures have a fix amount of values they can take on. All other floating-point features are 
computed as fraction of the integer alphabet size A or DSF-LEN, sometimes including 
the value 0 in the numerator, thus these features can take on as many values as the 
value of A, or DSF-LEN respectively. For simplicity, A is always set to its maximum 
value of 39. The standard deviation and mean characteristics of the uni-, bi- and tri-
grams distributions are fixed, as they are considered to be determined by the other 
statistical features: The standard deviation may follow the range rule estimation (std = 
(max-min)/4) and the mean value will be close to `DSF-LEN/A`. The choices for the 
Shannon entropy bases on the distribution of discrete probabilities for all characters, 
thus the amount of unique discrete distributions for k characters and a total of n > k 
occurrences determine the amount of values the Shannon entropy can take. For 0 ≤ n 
≤ 253 and 0 ≤ k ≤ 38, the Shannon entropy can take 194 different values on average. 

Manual Reconstruction 

We first attempt to reconstruct a domain name from its feature vector by investigating 
whether the combination of available FANCI features leaks new information that can 
be used to determine the original domain with more certainty. 
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 Inferred Features 

Table 3 demonstrates some new information can be inferred (or reconstructed) by 
combination of existing features. The information is new in the sense, that no feature 
in the original feature vector solely holds this information. The extraction of this new 
information is not bound to any special subspace of the domain name space. 

# 
Inferred 
Feature 

Computation Note 

1 
DSF 
length 

DSF-LEN = alphabet_size / char_diversity - 

2 

Actual 
amount 
of sub-
domains 

ACTUAL-PARTS = DSF-LEN / subdo-
main_lengths_mean 

Feature X_part caps the maximum 
amount of subdomain in the one-
hot encoding at 4, this can be cor-
rected. 

3 
TLD 
length 

TLD-LEN = length - (DSF-LEN + ACTUAL-
PARTS) 

Amount of separating dots ~ AC-
TUAL-PARTS. 

4 Alphabet 
Made up out of 'a-z' plus additional '0-9' or '_-' 
depending if features contains_digits > 0.0 or 
underscore_ratio > 0.0 

- 

5-1 
Absolute 
digit 
count 

DIGITS = digit_ratio * DSF-LEN - 

5-2 
Absolute 
vowel 
count 

VOWELS = vowel_ratio * (DSF-LEN - DIGITS) 

Feature vowel_ratio is computed 
w.r.t. total alpha-chars in DSF that 
can be estimated by DSF-LEN - 
DIGITS. 

5-3 
Absolute 
other 
count 

OTHER = DSF-LEN - (DIGITS + VOWELS) - 

6 

Fre-
quency 
distribu-
tion 

Brute-force discrete frequency distribution F 
over unknown {x1,...,xn} with known shan-
non_entropy and n = alphabet_size 

Shannon entropy is computed as 
weighted sum of character fre-
quencies. Restriction: 
sum({x1,...,xn}) = DSF-LEN and xi ≥ 
1 for all i in {1,...,n}. 

7 

Amount 
of 
unique 
charac-
ters 

Match vowel, digits and other amounts to bins 
in discrete frequency distribution F, i.e., find par-
tition F1 v F2 v F3 = F with sum(F1) = VOWELS, 
sum(F2) = DIGITS and sum(F3) = OTHER 

- 

Table 3: List of new features inferred (in capital letters) from the available FANCI features (italics). 

We briefly demonstrate the reconstruction of additional information of our short toy-
example domain "dga.b0tn3t.co.uk" in Figure 6. The original feature vector for this do-
main can be viewed in Table 2. 
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 After reconstructing the character frequency distribution and the probably unique 
counts for each vowels, digits and other characters, there is at the best of our 
knowledge no more information that can further reveal structural information about the 
original domain name. Further, there is also no feature that gives information about 
which characters of the groups vowels, digits and other are actually included in the 
domain and at what character position they would occur. Without such information, no 
further manual inference can take place. 

 

Figure 6: Inferred features for example domain 'dga.b0tn3t.co.uk'. 

Evaluation 

Privacy leakage can be measured by how far a new inferred information decreases the 
amount of pre-images that map to this feature vector. The naive brute-forcing of all 
domains that map to a fixed feature vector would require iterating 39length many do-
mains, since there are 39 domain characters. recognized by the FANCI feature extrac-
tor. A cleverer approach would reduce the amount of domain pre-images by using the 
insights from the newly inferred features. From a combinatorial point of view, the fol-
lowing 

1. With a fixed TLD length, the amount of choices T for the TLD can be estimated 
by the public valid-TLD list that is shipped with the feature extractor. 

2. The character frequency distribution for the sub-domains is uniquely deter-
mined. 

3. For every of the U settings of unique chars (per each of the groups vowels, digits 
and other): 

• The choice of K unique chars from a N-large set is (N choose K) 

• For each character-set of size N: 

▪ the possible amount of sub-domains of length L are NL 

▪ and for each DSF there are (L-1 choose ACTUAL-PARTS-1) pos-
sibilities to insert the separating dots. 
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 In conclusion, the remaining amount of possible pre-image can be calculated by: 

 

This formula still gives a large amount of valid pre-images and iterating over these pre-
images is still very time consuming. Privacy holds in this case, as the amount of valid 
pre-images is large and the selecting the correct one is close to impossible. We demon-
strate this on the short toy-example domain where the above formula evaluates to: 

 

 

This only reduces the pre-image space by a factor of 0.6528 when comparing this to 
the naive approach with 3916 = 2.8644e25 many pre-images. 

Deep Learning Reconstruction 

To avoid manual reconstruction pitfalls and to detach from viewing linear relationships 
only, a deep learning based generative decoder model is trained with the task of map-
ping feature vectors back to domain names. In this case, a secondary data set is used, 
of which the samples are fed through the FANCI feature extractor and subsequently, 
batches of features vectors and original domains are used to train the decoder network. 
The goal is that the decoder network is trained to learn the inverse mapping that in 
reality likely acts on a small subspace of the domain and feature space. However, the 
model has to be trained with a different data set and with the assumption that the data's 
characteristics are transferable to another set of benign NXdomain samples. 

Architecture and Training 

To reconstruct domains as character sequences of variables length from vectors of 
fixed length, an approach based on Sequence to Sequence (Seq2Seq) autoencoders 
is constructed [25]. For training the model, feature vectors are normalized (according 
to the normalization factors in Table X) and fed into multiple parallel layers of same-
size dense layers to enable the network to learn a better suited representation. The 
output of the two parallel networks is interpreted as initial state inputs into an LSTM 
layer. The LSTM is trained with teacher forcing [26, 27], to predict the next character 
based on the current string and the provided state. Teacher forcing is an effective 
method of training a recurrent neural network model that (re-)uses the output from prior 
time steps as input to the model. Inference is started by feeding in the normalized 
feature vector into the dense layers and a string with a start marker into the LSTM. 
During inference, each character is predicted by a single inference run of the model on 
the current partial string, starting with an empty string. Between each run, the new 
character is appended to the current input. Similarly, the state of the LSTM layer is 
preserved in each of the inference runs. Inference stops when a string of maximum 
length (253) is generated or whenever the end marker is predicted. Including the start 
and end markers, the available characters can be encoded as 41 integers. In this study, 
the architecture of the Seq2Seq decoder takes the form depicted in Figure 7. 
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Figure 7: The sequence to sequence based architecture for the decoder model that learns to map 
fixed-length feature vectors to the space of variable-length domain names. 

To train the decoder, a data set different to the attacked set is used. The Tranco data 
set [24] which captures a current ranking of valid domains is publicly available and can 
be utilized by any attacker. The Seq2Seq decoder is trained on a random 10% sample 
of the full 8PPV Tranco data set (6.516.002 samples from the timespan: 11th August 
2020 to 9th September 2020 (30 days)) with the categorical cross-entropy loss using 
the RMSprop optimizer with the following settings: (learning_rate=0.001, rho=0.9, mo-
mentum=0.0, epsilon=1e-07). The model is trained for at most 100 epochs with a batch 
size of 512. 

Evaluation 

We evaluate the success of this attack by measuring the performance of the decoder 
network on a private data set of NXdomains with help of the Levenshtein distance. As 
representative private data set we use the above mentioned RWTH, Masaryk and 
CESNET benign data sets and the (Damerau-)Levenshtein distances as well as nor-
malized versions of both distance metrics. Normalization is performed by dividing the 
integer edit distance by the longer length of the compared strings, which preserves the 
triangle-inequality for the metric. For each of the large RWTH and Masaryk data sets 
a random sample of 1,000,000 benign samples is taken as representative set. The 
reconstruction capability of the trained decoder can be tested by comparing the original 
domain string with the output of the decoder model when it is given the respective 
feature vector of that domain. Due to the timely effort of the evaluation, its results will 
be presented in the next version of this deliverable. We suspect the case, that the 
underlying distribution of the Tranco data set is too far away of those of the mentioned 
benign data sets, as the samples from the Tranco data set only occupy exactly one 
subdomain each and are valid domains nevertheless. Should the reconstruction capa-
bility be negatively impacted by this bias, one could repeat the experiment by training 
the decoder on each one of the benign data sets and choose the other two remaining 
data sets as the sets that are attacked. This is a valid scenario within this deliverable, 
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 as a sharing participant would have access to his own benign data and not just a pub-
licly available list of benign domains. 

Group Membership Inference 

Inside a set of benign samples, one may suspect the presence of multiple sources 
generating NX domain samples. The most obvious ones are listed below: 

• Typos by the end-user 
• Misconfigured Software 
• Benign DGAs 

If an attacker can successfully determine that a shared batch of benign samples origi-
nates from one of these sources, it might leak private insight about user behavior and 
software usage. Under the assumption that domains from these sources exhibit unique 
characteristics, identifying these groups is an unsupervised learning problem. Thus, 
clustering or at least manifolds embeddings in combination with dimensionality reduc-
tions can be applied. This helps to visualize the benign data in a low-dimensional rep-
resentation in which the classes can be visually identified and separated. If an attacker 
learns an embedding or about clusters of data and can successfully link them to one 
of the above sources, new feature vectors can be matched to these groups or cluster 
via a nearest neighbor classification. Unfortunately, none of the above-mentioned be-
nign data sets are labelled with an appropriate source identifier, such that resulting 
clusters from the following evaluation are difficult to verify. 

Evaluation 

As a first measure we apply a random projection [28] and a PC (principal component) 
projection [29] on a two-dimensional plane normalized to the ranges [0, 1] on each 
axis. Results are given below for the benign data sets CESNET (see Figure 10), Ma-
saryk (see Figure 9), and RWTH (see Figure 8), while there are only 1,000,000 random 
samples each taken from the two latter sets. 
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Figure 8: Results of a random projection and a PC projection of the RWTH benign NXdomains 
data set onto a two-dimensional plane with both axes normalized to range [0, 1]. 
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Figure 9: Results of a random projection and a PC projection of the Masaryk benign NXdomains 
data set onto a two-dimensional plane with both axes normalized to range [0, 1]. 
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Figure 10: Results of a random projection and a PC projection of the CESNET benign NXdomains 
data set onto a two-dimensional plane with both axes normalized to range [0, 1]. 

First insights show that for each projection method the resulting embedding looks very 
similar to the of the other benign data sets. However, none of the embeddings show 
any significant clusters in any of the benign data sets although there exists some indi-
cation to separable groups, e.g., a split a x=0.3 for all random projections or the top 
right part in the PC projections. This could imply that an attacker could also not distin-
guish between feature vectors coming from different sources, which is still to be inves-
tigated. In the future, group membership inference can also be evaluated with other 
embedding (or projection) methods of which the results are likely more expressive but 
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 also require more computational cost. These include the locally linear embedding [30] 
method and its variants as well as t-SNE [31] initialized with a PCA embedding. 

Sharing of First-n-layers (Feature Extractor) of Deep Learning Classifiers 

Similar to sharing the feature extractor of a classic machine learning approach, the 
feature extractor of a deep learning model can also be used for sharing data. Depend-
ing on the architecture of a deep learning model, the first few layers of the trained 
model are thought of as an equivalent to a hand-selected feature extractor. Partially 
sharing a trained model may results in a new attack surface. In the particular case in 
which the first part of a horizontally split model is shared, the following privacy attacks 
become relevant: 

• Model Inversion 
• (Group) Membership Inference 

The goals of both the previous Reconstruction attack and the Model Inversion attack 
are very similar; they differ, however, in their operating principle. Here, the published 
feature extractor is a neural network model specifically representing a differentiable 
function. Hence, an inversion may directly utilize the weights in the shared model to 
invert that function instead of just learning an inversion mapping from samples. Model 
Inversion tries to recreate an input from a known output (in this case the features) by 
an iterative gradient optimization of the input values on a suitable loss that compares 
the model output to the known output. A privacy evaluation of the Model Inversion 
attack on a deep learning feature extractor can again be quantified with the Le-
venshtein distance. 

Evaluation 

For the next version of this deliverable we plan to conduct the threat assessment of 
Model Inversion and Membership Inference attacks against this sharing scenario. This 
assessment can be performed over the following combination of parameters: 

• Vary the deep learning architecture used for the DGA classifier, in this case the 
available NYU, Endgame or ResNet architectures. 

• Vary the point at which the model is split into feature extractor and classifier. 

3.2.6 Development of a Feature-based DGA Multiclass Classifier 

Since our preliminary privacy analysis of the feature-based approach FANCI yielded 
promising results, we are developing a contextless and feature-based approach for 
DGA multiclass classification. Such an approach would enable us to compare the pro-
vided privacy guarantees of feature-based and deep learning approaches in the con-
text of DGA multiclass classification. To the best of our knowledge there is currently 
no contextless and feature-based multiclass classifier for DGA attribution. 

Naïve approach: adaption of FANCI to a multiclass classifier 

Since, there currently is no contextless and feature-based multiclass classifier for DGA 
attribution we adapt FANCI to a multiclass classifier in order to allow for comparisons 
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 with featureless approaches. We construct multiclass classifiers from the existing bi-
nary classifiers by either using multiple one-vs.-one (OvO) or one-vs.-rest (OvR) clas-
sifiers. Thereby, we can reduce the problem of multiclass classification to multiple bi-
nary classification problems. We refer to the multiclass enabled SVM approaches as 
M-FANCI-SVM-OvO and M-FANCI-SVM-OvR, and to the multiclass enabled RF ap-
proaches as M-FANCI-RF-OvO and M-FANCI-RF-OvR in the following. Further, in 
contrast to the SVM implementation, the utilized RF-based implementation is inher-
ently capable of multiclass classification. Thus, we additionally evaluate FANCI’s RF 
implementation which we enabled to a multiclass classifier and refer to it as M-FANCI-
RF in the following. 

Preliminary Evaluation 

In a preliminary evaluation using the datasets described in deliverable D3.4 (Algo-
rithms for Analysis of Cybersecurity Data) for DGA multiclass classification we ob-
tained not promising results. Compared to our developed ResNet.MI model, the 
adapted FANCI multiclass classifier achieve f1-scores which are 23% - 45% worse. 
This is due to the fact that the features used in FANCI are specifically created to dis-
tinguish between benign and malicious NXDs and not to distinguish between domains 
generated by different DGA families. Thus, we reckon that for a promising multiclass 
classifier it is necessary to craft new features. 

Development of a Novel Feature-based DGA Multiclass Classifier 

Feature-based approaches rely on specific features that are hand-crafted using do-
main knowledge. The engineering of such features requires much more effort com-
pared to the usage of deep learning classifiers where all important information has to 
be encoded and provided to the model. The deep learning model subsequently learns 
the relevant features on its own in an end-to-end fashion during training. Additionally, 
after the feature engineering the best combination of features has to be selected which 
is not a trivial task. The combination of several engineered features could contain mu-
tual information which could render single features useless for classification. Such fea-
tures have to be removed as their extraction from raw data might require significant 
processing time which could have a negative impact on the real-time capability of a 
classifier. Additionally, as we have seen in the preliminary privacy analysis of FANCI, 
different features have different impacts on the privacy. Thus, an appropriate feature 
selection could help in improving the provided level of privacy. Lastly, in the develop-
ment process of a feature-based classifier a huge amount of hyperparameters have to 
be optimized.  

Currently, we are still in the development of such a classifier and we plan to present 
our feature engineering, feature selection, hyperparameter optimization, as well as an 
comparative evaluation between our novel classifier with deep learning models as well 
as with all adapted FANCI approaches in the final version of this deliverable. 

 Application and Host Profiling 

The background for application profiling in the context of sharing is similar in all work 
packages of WP5. Hence, the following paragraph can also be found in the Delivera-
bles D5.3 and D5.5. 
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 The general idea of application and host profiling is to model the behavior of hosts and 
applications based on network data as well as system events, which was described in 
more detail in Deliverable D3.4. Based on the profiles, the idea is to detect anomalies, 
i.e. when a host or application behaves not as expected. Another use-case is to use 
the profiles while investigating incidents, e.g. to classify the type of host before execut-
ing recovery steps. The application profiling can be further divided into identification 
and classification. For identification, the goal is to simply detect the operating system 
and list of applications on a host. This already works well by just monitoring DNS traffic. 
The goal of the classification task is to not only identify an application, but to compare 
the behavior of a monitored application with a reference model. This can either provide 
more detailed information, like the application version, or information whether the ap-
plication behaves as expected. The classification task relies more on system event 
data, e.g. monitored by the F-Secure Sensor or software like Sysmon, instead of net-
work traffic. 

The goal of this work package is to make the profiles more robust by computing the 
profiles based on data from multiple organizations. For application profiles, this means 
to include edge-case behavior of applications in the profiles which might not be ob-
served by all collaborating organizations. We hope, that the sharing will result in more 
accurate profiles. Analogously, the representative host behavior profiles can be shared 
to achieve a more robust profile of behavior. Moreover, sharing a host profile with 
anomaly description could verify, whether this anomaly is only local or is observed at 
a large scale (and hence is not so anomalous). 

3.3.1 Sharing Scenarios 

In the following, we will describe the different scenarios that we want to evaluate for 
sharing and collaboration in the context of application profiling. They are based on the 
three scenarios described in Deliverable D3.4 for application fingerprinting, with the 
goal of increasing the robustness using collaboration and sharing of data between mul-
tiple organizations. Robustness in this case means, that the different approaches 
model the behavior of an application more precisely. Another advantage of a global 
model is, that it can be used by organizations that are not able to compute a local 
model by themselves, e.g., because they don't have access to sufficient amounts of 
data. The scenarios describe collaborative rule extraction, process mining, as well as 
machine learning based on shared anonymized data. For system event data, we will 
use the F-Secure Sensor (described in Deliverable DX.X) as well as System Monitor 
(Sysmon), a Windows system service for logging of system activities. For network data, 
we will use a tool that we developed for this project, which is able to label network 
packets with the application that produced them with ground truth accuracy.  

First, we will give more details about the labeling of datasets, i.e., the tool we developed 
for labeling of network data, as well as the F-Secure Sensor and Sysmon for monitoring 
system events. Next, we describe the experiments and approaches for collaborative 
application profiling. At the time of writing this deliverable, we are still in the planning 
phase of the experiments for collaboration in the context of application and host profil-
ing. The focus for now was to develop and integrate the tools to generate labeled da-
tasets with ground-truth accuracy, as well as to finish the local approaches in WP3 
first. This is because we will use similar techniques for profiling on the global level 
compared to the local level, just on different data. Hence, we want to finish the devel-
opment of the local approaches first. 
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 Labeling Datasets 

To be able to share anonymized data for a global model, the (labeled) datasets need 
to be created in the first place. For system events, we already have tools, e.g. the F-
Secure Sensor, to collect such data. In the context of application profiling (without con-
sidering anomaly detection), this data is already labeled because all events include a 
reference to a specific process. For network data, the labeling by process or application 
requires a combination of network monitoring and system monitoring. For the labeling 
of network traffic, we developed a tool, which already works for Windows and will be 
extended for Linux as well. The tool, in the following referred to ad GALF (Ground Truth 
Application Labeling Framework), currently is able to label network traffic with ground 
truth accuracy.  

The Windows version consists of mainly three components: event logging, packet cap-
turing and packet labeling. The event logging component makes use of the Windows 
monitoring tool Procmon (Process Monitor). Procmon logs every event occurring on a 
Windows machine together with the application causing the event. Those events are 
filtered to only get network events. The XML output of Procmon is then parsed and the 
information of individual events is forwarded to the labeling component via a queue.  

Simultaneously, the capturing component runs Tshark and parses its output in real-
time. By this, one gets a stream of packets that is passed to the labeling thread via 
another queue. Network events and network packets have the same order and are 
both timestamped. GALF makes use of these properties and matches an event to a 
packet by first comparing source IP address, source port, destination IP address and 
destination port. Then, only if those are the same in the event and in the packet, GALF 
considers the timestamps and assigns the packet with the smallest time-delta the ap-
plication specified in the event.  

Another special case arises if one considers DNS network packets. Applications usu-
ally use the system DNS resolver if they need to resolve a URL. Since Procmon reports 
which application is triggering the network event this would lead to having every DNS 
packet labeled as svchost.exe instead of the original application requesting the re-
solver. To take care of this GALF considers the DNS client events log of Windows. 
Once activated, this log saves all the DNS queries together with the process ID of the 
original requesting application. To finally label DNS packets, GALF first compares the 
query logged in the events with the query written in the packet and uses matches again 
the event to the packet with the smallest time-delta. To map process IDs to their appli-
cations, GALF additionally polls tasklist.exe periodically. In the end, GALF can match 
packets with the application that was causing it - even for short-lived connections such 
as DNS.  

The Linux version is planned to use Systemtap as a means to intercept the kernel 
functions sending IP packets. By this, it is possible to learn the process IDs of the 
processes responsible for the according packet together with source IP address, 
source port, destination IP address and destination port. Then, it is again possible to 
match network packets and processes based on this 4-tuple. To address DNS packets, 
it is planned to use Systemtap to also intercept calls to the internal DNS resolver which 
can then be mapped with the process ID, the DNS query, the IP addresses and the 
ports again.  
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 Finally, we want to design a sharing interface such that other parties can share their 
labeled network traces generated with GALF. This will make use of MISP, which is the 
sharing platform that we use for SAPPAN. As defined in our architecture, the platform 
will be used to share the information that a dataset is available, including meta infor-
mation about the data and where to receive it from. Hence, we will implement a data 
model for MISP that allows for the sharing of datasets used for application and host 
profiling. 

Before such datasets are shared, they need to be anonymized and sanitized. Anony-
mization includes steps like obfuscation of IP addresses, while the sanitization step 
implements measures to enforce organization specific policies, e.g., the exclusion of 
security-critical hosts from the dataset. In general, user specific data should be anon-
ymized before sharing. In the case of datasets produced by GALF, this can for example 
include DNS queries initiated by the browser. Generally speaking, when looking at 
DNS, most of the user-initiated queries will come from the browser. Other applications 
mostly use the DNS protocol in an automated fashion and independent of the user, 
with exceptions of course. At the time of writing this Deliverable, techniques for anon-
ymization and sanitization are still in an early stage of development. 

Sharing of Labeled Data for Collaborative Rule Extraction 

In Deliverable D3.4, we described the approach of statistical or rule-based modeling of 
application behavior. The idea for collaboration is to have more data from different 
environments available for each application that we want to profile. As of now, we use 
the rule-based approach only for the identification of applications based on DNS data. 
This allows to create a list of active applications for each host by monitoring their net-
work activity. This information can be used to determine the type of the host (e.g. 
server, developer machine, office machine, etc.). However, this generally doesn't allow 
to determine whether the applications behave as expected. For this, we will use pro-
cess mining and machine learning as described below, which allow to model more 
complex behavior in a more automated fashion compared to the rule-based approach. 

The first option for collaboration is to extract rules from each shared dataset on the 
global level separately, which is similar to sharing of each party's rules in the first place 
(as described in Deliverable D5.3). The different rule sets can then be merged to a 
global rule set. For merging, we also plan to evaluate multiple approaches. One option 
is to build the union of all rules. Under the assumption that all shared rules are correct, 
this results in a more precise ruleset. However, this doesn't allow to filter or correct 
rules that are flawed. Another option is to combine all rules by computing the intersec-
tion, which has the potential to filter false rules. However, this approach might rules 
describing edge-case behavior which was not observed by all organizations. Hence, a 
hybrid approach will hopefully combine the best of both worlds. One way could be to 
include a rule to the global ruleset, if at least two organizations can assert the correct-
ness of the specific rule. 

The second option is to first merge the shared datasets into one global dataset, and 
compute the rules and statistics based on that. For merging, we have similar options 
as for the merging of rulesets. However, because we merge the available data on a 
lower level, it is possible that more information is preserved this way. For example, a 
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 rule might be too complex or precise to compare it to similar rules of other organiza-
tions. However, if the datasets are merged, it might be easier to extract rules that fit to 
the global datasets as well as the local ones. 

At the time of writing this deliverable, we did not yet conduct the experiments to eval-
uate the different approaches of extracting rules in a collaborative manner, because it 
requires access to labeled datasets as well as proper anonymization. Using the devel-
oped labeling tool as well as the sensors for monitoring system events, we are now 
able to create such datasets. 

Sharing of Labeled Data for Collaborative Process Mining 

The second approach for application profiling that we described in Deliverable D3.4 is 
process mining. The basic idea is to generate process model for each application which 
models its behavior based on the monitored data. The output of the process mining 
techniques consists of Petri Nets containing the system events, or in case of network 
data, DNS events (i.e. queries). We are currently working on process mining tech-
niques based on DNS data (similar to the rule-based approach), as well as system 
events collected by the F-Secure Sensor as well as Sysmon. The first will primarily be 
used for application identification, and the latter for application classification, and later 
for anomalous behavior detection. For collaboration, the idea is similar to the rule-
based approach. The goal is to make each application model more robust, e.g., by 
including edge-case behavior that was not monitored by each organization. 

This will be done by merging the datasets first, and apply the process mining ap-
proaches to the global dataset to compute a global model for each application. Creat-
ing models for each dataset first and then merge the models instead is not as intuitive 
as for the rule-based approach, because of the more complex structure of the process 
mining models. How such models can be merged will be investigated for Deliverable 
D5.3, which covers the computation of a global model based on locally shared models, 
instead of shared anonymized data. 

For the merging of datasets, we will investigate the same options as for the rule-based 
approach. This means, we will experiment with simply computing the union of each 
local dataset, the intersection, or something in between. The goal is to end up with a 
process mining model that describes the behavior of an application more precise. This 
is under the assumption that a specific application generally behaves similar for differ-
ent organizations. Since the users are different, the applications might be used in a 
different way, resulting in more diverse data. However, some application might behave 
drastically differently when used in a different environment, which could result in a 
global model that performs worse compared to the local models for each organization. 
Hence, this approach can only be used for applications that don't fall into that category. 

Sharing of Labeled Data for Collaborative Machine Learning 

The third approach we described for application profiling in Deliverable D3.4 is machine 
learning, i.e. deep learning. For DGA detection as well as phishing detection, the ma-
chine learning approach works very well. However, for the application profiling case, 
the results so far indicate that the rule-based and process mining based approaches 
are better suited.  
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 For the identification task, the rule-based approach on DNS traffic only so far works 
pretty well. For identification, it does not make sense to use system events, since then 
the task becomes trivial. The advantage of using network traffic is that it is easy to 
monitor and does not require to install a sensor on each host. As far as application 
identification based on network traffic goes, one advantage to use machine learning is 
that the process of creating the model is more straight forward compared to the extrac-
tion of different rules. However, the rules can be comprehended, and to some extend 
be verified, by humans, while deep learning models are a black box. 

For the classification task, it is not only important to determine whether the behavior of 
a monitored application is conforming to the reference model or not, but also how it 
differs in case it is not entirely conform, which is likely. With a process mining model, 
the exact events that either were different, unexpected, or missing, can be visualized 
easily which allows to further analyze the anomaly. A deep learning model on the other 
hand simply outputs a confidence score, which can indicate how well the data fits to 
the model, but not where it differs. This could partially be solved by using machine 
learning approaches like random forests which allow more inside into the decision pro-
cess, however, this would require more manual effort for feature engineering compared 
to process mining. 

The goal is to at least evaluate the deep learning approach for the identification case, 
especially with federated learning as described in Deliverable D5.5. Because we al-
ready investigate the federated learning approach for other showcases, this can be 
applied more easily without building everything from ground up. 

Sharing and Collaboration for Host Profiling 

Sharing and collaboration for the host profiling are in many ways similar to application 
profiling. The main difference is that there is no given host that should share some 
basic properties as it is in the case of the applications. In other words, we expect that 
an application should show similar behavioral features across all installations even 
across different environments/companies/networks. The name of the application is a 
unique identifier of the behavior. Such a unique identifier that would mark a specific 
behavior and that would be interpretable across different environments/companies/net-
works does not exist in the case of the host behavioral profiling. We can share only 
descriptions of the common host behavior enriched with labels that we assign to the 
behavior. There is no generally accepted set of labels, the main key to look at when 
leveraging the shared information is the description of the behavior itself. 

On the global level, sharing and collaboration enable us to get the bigger picture, in 
general. On the global level, we can adjust the description of the common host behav-
ior to be more robust and represent a wider range of the hosts. Once the robust host 
behavior profiles are available, the improved anomaly detections can be deployed. We 
can share the anomaly detection linked with the typical behavior description, and ob-
serve, how many other entities also observe this combination of the anomaly and be-
havior. If such a combination is observed over a large scale of the entities contributing 
to the sharing, we can set this anomaly as a global problem which could lead us to look 
for more system changes that we would look at in the case that the anomaly is ob-
served only at one entity.  
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 Last, but not least, the sharing of the typical behaviors with labels can improve the 
overall visibility of the network. The asset management in the SME is usually done 
manually and it is hard to keep it updated. Using the shared behaviors observable from 
the network traffic, we can label the hosts and make at least some asset management 
updates without the need for direct access to the individual machines and manual work. 

 Anomalous Behavior Detection 

This Section describes how we plan to use shared anonymized data in order to detect 
anomalous behavior that can be relevant for detecting cyberattacks. First, we present 
a model for detecting potentially malicious user behavior by analyzing the login activity 
of users within an organization (focusing on Linux and Windows machines). Next, we 
outline the benefit of collaboration for detecting anomalous behavior based on appli-
cation profiles, which will focus on Windows applications. 

3.4.1 Sharing Scenarios 

In the following, we describe the different sharing scenarios for anomalous behavior 
detection. 

Detecting Anomalous Login Activity of Users in Linux and Windows Machines 

Anomalous login activity can often indicate malicious operations. We started from 
building organization-wide models, based on the data collected in end-user machines 
by FSC security monitoring sensors (sharing on the end-user level), for identifying 
anomalous login behavior. While those organization-specific models are used at the 
moment separately, the next step would naturally be to explore potential benefits and 
confidentiality requirements of sharing models, or their appropriate derivatives, within 
certain groups of organizations. 

Detecting Anomalous Behavior Based on Profiles 

The idea of anomalous behavior detection based on profiles is to detect deviations 
from the expected behavior. As teased in Deliverable D3.4, we want to approach this 
for the host profiles as well as application profiles. In the context of this task, the focus 
will be on detecting anomalies based on the application profiles, because host profiles 
differ too much among organizations, such that they don't benefit much from collabo-
ration. 

Anomalous behavior detection based on application profiles in WP5 solely relies on 
increasing robustness off the behavioral models resulting from collaboration. We ex-
pect that this allow for more accurate prediction of the expected behavior, resulting in 
more accurate detection of unexpected behavior. However, the focus will not be to 
automatically classify such anomalies as malicious or benign, but to increase the ac-
curacy in a sense that detected anomalies actually correspond to unexpected behav-
ior. For process mining models, the exact deviations can be computed, e.g., if a system 
event happened with higher privileges than usual. We want to use visualization tech-
niques to highlight these deviations from the reference models, such that they can be 
classified by an analyst more easily. 
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 3.4.2 Models for Detecting Anomalous Login Activity 

The basic user login activity can be defined as the following event: 

• User U successfully logged in to endpoint H 

Data of the user login activity are collected by F-Secure's endpoint sensors in the ma-
chines of the customer organizations. Machine learning is used to identify potentially 
malicious login attempts by formulating our task as a multiclass classification problem. 
The focus is on detecting two types of behavior, which might go unnoticed by other 
detection components: 

• initial access - an attacker succeeds in logging in to an organization’s endpoint 
from the Internet (the login's source IP is outside of the organization’s network) 

• lateral movement - an attacker, already in control of an organization’s end-
point, logs in to another endpoint within the organization’s network (the login's 
source IP is within the organization’s network) 

These two types of behavior correspond to the two types of alerts produced by our 
detection models. 

Data and Approach 

At the high level, for a given organization, we train a model where one class corre-
sponds to one endpoint. At the inference time, if data coming from endpoint A are not 
assigned by the model to the class of A, it is considered an anomaly and triggers an 
alert. If data from a specific endpoint were not included in the model training set, that 
endpoint will obviously be skipped by the detection flow. 

Login attempts are represented by these two platform-dependent event types: 

• linux_audit events (Linux endpoints) - events with event.data.mes-
sage_type='USER_AUTH' represent login attempts. 

• windows_security_event (Windows endpoints) - events 
with event.data.event_id=4624 represent login attempts. 

In data, only successful logins are considered. To address sharing-related confidenti-
ality concerns, we follow the principle of data minimization and handle only the follow-
ing information of successful login events: 

• user id (a randomly generated value identifying the user) 
• sensor id (F-Secure's security monitoring sensor ID in the endpoint) 
• source IP address 
• authentication protocol used 

To improve the accuracy of the model, we implemented login deduplication: we con-
sider only unique logins across a given organization. We call a login unique if it occurs 
on exactly one endpoint. Examples of non-unique logins include: system users logging 
in to multiple endpoints to perform maintenance tasks; application users - for cluster 
management software, etc. Filtering out non-unique logins improved the accuracy of 
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 the model by an order of magnitude (on average, for the organizations from the model 
piloting group). 

The bag of words approach is used to model the login activity of an endpoint. We con-
sider user IDs, IP addresses and authentication protocol identifiers as words in our 
dictionary and, for each endpoint, we create a document from the set of successful 
logins observed by the security monitoring sensor in a particular time period. To pro-
duce a vector representation of the login activity, we use a count vectorizer on this bag-
of-words document. 

If a login event is identified as anomalous, the features of the event are enriched - in 
order to provide relevant information to security analysts - with additional information: 

• process details of the process performing the login 
• endpoint sensor version and operating system 

The model training flow considers a large amount of historical data (e.g., 2 months). 
The model updating (re-training) procedure is therefore supposed to be carried out 
periodically (e.g., monthly). 

Data Analysis Pipeline 

The pipeline is composed of two distinct flows: model training and detection. The 
pipeline assumes the following: 

• malicious login attempts can be identified by considering the historical login ac-
tivity within the organization 

• the training data do not contain login attempts that are both malicious and suc-
cessful 

The model training flow (Figure 11) produces a multiclass classification model for 
each organization. Each sensor / endpoint within the organization is represented in the 
model as a class, and at the inference time the model uses the login activity on an 
endpoint to predict its sensor id. 

 

Figure 11: The model training flow in the data analysis pipeline. 



 

Page 39 of 44 

 SAPPAN – Sharing and Automation for Privacy Preserving Attack Neutralization  

WP5 

D5.1 – Global Model Based on Shared Anonymized Data, First Version 

 Schäfer, 29.01.2021 

 A training dataset consists of all the successful login events on the endpoints in an 
organization, in a specified training period (which is configurable). The last day of the 
training period is used as a validation set, that is, the model is trained on the training 
period data with the last day's data excluded. Then, the data from the last day is used 
to check if the model can consistently predict the sensor identities from the login activity 
on the sensors. If the accuracy of the model on the validation set is above a specified 
threshold (e.g., 90%) the model is kept, otherwise it is discarded. The accuracy is un-
derstood here as the percentage of correctly predicted endpoints for the login events 
in the validation set. 

The detection flow (Figure 12) uses the models generated by the model training flow 
to detect anomalous login behavior.  

 

Figure 12: The model detection flow in the data analysis pipeline. 

As mentioned, to avoid sharing-related data confidentiality concerns, the information 
used by the model is a small subset of the information observed by the security moni-
toring sensors in the endpoints. At the same time, the unused part of the information 
can be important for security analysts for investigating detected anomalous behav-
ior. For this reason, the alerts on identified anomalous login attempts are augmented 
with certain parts of the security monitoring data to provide a context for the potentially 
malicious logins. 

The model for a given organization is used to assign logins to the endpoints in that 
organization. If the model classification is correct, the login activity is considered nor-
mal. Otherwise, the activity is considered anomalous. The currently deployed model is 
a Naive Bayes classifier, and all the model parameters are set to their default values. 
Naive Bayes was selected since it provides good accuracy in the validation phase. 
More advanced models may be considered in the future. 

https://spark.apache.org/docs/latest/ml-classification-regression.html#naive-bayes
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Figure 13: Training and detection flow in the data analysis pipeline. 

As a note, the output of the model in the recent experiments - unsurprisingly - contains 
non-negligible numbers of false positives. The current approach to addressing this is-
sue is to filter the anomalous logins identified by the model with a post-hoc filter incor-
porating expert knowledge from security analysts. At the same time, the experts in-
volved in the model piloting are positive about the model's value for the overall attack 
detection logic, which indicates that the chosen approach can be considered promis-
ing. 

 

4 Conclusion 

In this deliverable, we presented the current state of our approaches and experiments 
regarding distributed learning on a global model based on shared anonymized data. 
We briefly discussed the context of this task within SAPPAN, and presented our show-
cases. Similar as in Deliverable D3.4, this deliverable focuses on the showcase of DGA 
detection, because it is the most mature both in WP3 as well as WP5. In detail, we 
defined three different scenarios for creating a global model based on shared anony-
mized data for DGA detection. In the final version of this deliverable, we will evaluate 
these sharing scenarios and compare the gain in classification performance as well as 
the provided privacy guarantees with each other. A preliminary privacy analysis of the 
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 feature-based DGA detection approach FANCI showed that sets of feature vectors 
seem to be resilient against a reconstruction attack and can therefore be used as sort 
of anonymization process in this sharing scenario. Since we cover the use case of 
DGA detection in all three deliverable (D5.1, D5.3, and D5.5) that are focusing on the 
creation of global models based on knowledge distribution, we will be able to compare 
the different approaches with each other. For the application and host profiling, we 
focused on describing the general ideas for our different sharing scenarios. We are still 
finalizing our approaches on the local level for WP3, which are required to build models 
on the global level, which will be included in the second version of this deliverable. For 
detecting anomalous login activity, we presented the model and training details and 
mentioned the positive opinion of security experts on the first piloting results. 

For future work and the second version of this deliverable, we plan to further conduct 
the experiments for DGA detection and extend the privacy analysis of machine learning 
models. For application profiling, we so far only designed the scenarios and experi-
ments. For the next deliverable, we will build global models for application profiling 
accordingly and measure how well they generalize compared to the local models. For 
anomaly detection, we will evaluate how well suited the application profiles are for this 
task on the global level. Additionally, we will conduct further experiments with the mod-
els for detecting anomalous login activity. 
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