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 Executive Summary 

This deliverable is the final version of Deliverable D5.1 which relates to Task T5.1 
"Distributed Learning of a global model based on shared anonymised data". Its goal is 
to build a global model, similar to the tasks T5.2 and T5.3, by directly sharing training 
data. Therefore, the deliverables D5.2, D5.4, and D5.6 have some overlaps, especially 
with respect to background, motivation, and the context within SAPPAN. In general, 
WP5 focuses on sharing and federation for cyber threat detection and response and 
this task is one of three tasks focusing on collaborative learning. This deliverable fo-
cuses on different collaborative machine learning approaches for the Domain Genera-
tion Algorithm (DGA) detection methods, as well as rule-based and process mining-
based approaches for application profiling, all of which were developed in WP3. Spe-
cifically, we define three approaches for building DGA detection models based on 
shared anonymised data, perform a privacy study on the most promising approach, 
develop a novel feature-based DGA classifier for DGA multiclass which can be lever-
aged for data anonymisation for collaborative DGA multiclass classification, and per-
formed experiments to measure the impact on application profiles when sharing data. 
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 1 Introduction 

In D5.2 we report the continuation of our work from the initial version of this Deliverable 
(D5.1). In D5.1, we described the experiments and approaches to build global models 
based on shared local data. For some of the experiments we already presented initial 
results. The final results are now described in this document. 

This deliverable for the Task T5.1 has similar goals as the Tasks T5.2 and T5.3, hence, 
a large part of its motivation and context is similar to the other tasks. In SAPPAN, one 
of the innovations is to enable privacy-preserving sharing of intrusion detection data, 
detection models, and response handling information. The objective of sharing this 
information is to improve the local capabilities of each participating organisation by 
collaboration. Another flavour of sharing in the scope of SAPPAN is sharing among a 
cybersecurity service provider or vendor and various user groups of its customer or-
ganisations. In WP3, one of the tasks is to develop local detection and response mech-
anisms. In WP5, we want to utilise these mechanisms on the global level to improve 
them using different sharing mechanisms. 

This deliverable focuses on building global detection models based on shared anony-
mised data. The idea is to collect data, prepare training data for machine learning mod-
els on the local level, anonymise it, and share it to the global level. If this is done by 
multiple parties, this global dataset can be used to build global detection models with 
increased accuracy or robustness compared to the local models. Throughout the first 
three tasks of WP5 we focus on the showcases for which we developed local detection 
mechanisms, as well as some additional ones. These mechanisms include machine 
learning models, process mining models, as well as rule-based models.  

This document is structured as follows. First, we briefly outline the context of the Task 
5.1 in the overall scheme of the SAPPAN project. Next, we describe the general idea 
of this task in more detail, discuss privacy for machine learning models, and afterwards 
describe the different showcases including different approaches for building global de-
tection models. First, we present the showcase of DGA detection including three pos-
sible approaches for building a global model based on shared anonymised data. For 
the most promising approach to collaborative DGA binary detection, we perform an 
extensive privacy study. The results of the study were promising, hence why we de-
veloped a novel feature-based DGA classifier for DGA multiclass classification that can 
be used in the same sharing scenario as investigated for the binary classification case. 
Next, we present our experiments for three application profiling approaches based on 
rules and process mining. This is followed by an evaluation and discussion of our 
model for detecting of anomalous login activity. Finally, we conclude this deliverable 
with a summary. 
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 2 SAPPAN Context  

The context for building a global model in SAPPAN is similar for the first three tasks in 
WP5. Hence, the following paragraph can also be found in the Deliverables D5.4 and 
D5.6. 

 

Fig. 1: SAPPAN scheme regarding local and global response and recovery 

The overall scheme for sharing, detection, and response in SAPPAN is shown in Fig. 
1. The top half of the scheme describes the detection components, and the bottom half 
the response components, while the left half corresponds to the local level, and the 
right half to the global level. The goal of WP5 is to implement the global level with 
respect to sharing of data and models, building global models for detection, sharing of 
response and recovery information, as well as supporting visualisation. The Tasks 
T5.1, T5.2 and T5.3 include the development of global models for detection, based on 
several approaches. The general idea is to utilise the data and models developed in 
the Task T3.3 on the local level by sharing them among multiple organisations to build 
global detection models. The goal is to end up with global detection mechanisms that 
are superior to the local ones. Another flavour of sharing in the scope of SAPPAN is 
sharing among a cybersecurity service provider or vendor and various user groups of 
its customer organisations. In such cases, we aggregate data or local attack detection 
models built in individual endpoints. Key problems with respect to sharing are, of 
course, privacy and efficiency, which are tackled by an assortment of approaches in-
vestigated in T5.1, T5.2 and T5.3. The approaches range from sharing of anonymised 
data, to sharing of only pre-trained models, to replacing sharing by other techniques. 
We apply these techniques to several showcases similar to those described in WP3 in 
order to build global detection models with adequate recall and precision while provid-
ing certain levels of privacy and efficiency, including cost-efficiency. For that, we will 
use anonymisation techniques developed in Task T3.4 based on the privacy require-
ments described in the Task T2.2.  
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 For Task T5.1, we develop approaches for building global models based on shared 
anonymised data. The first challenge is to anonymise the data in a way that eliminates 
all privacy risks but still preserves enough information to build a useful global model. 
The second goal is to use the shared data from multiple organisations to create a 
model superior to the local ones, e.g., with increased accuracy. 
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 3 Distributed Learning of a Global Model Based on Shared Anony-
mised Data 

This deliverable focuses on the creation of a global detection model based on shared 
anonymised data in order to centralize the detection that is applied at the local level 
(WP3) to the global level (WP5). To this end, data from several organisations is com-
bined to detect attacks that are not detectable in a single organisation alone, while 
respecting the privacy requirements of individuals and organisations. Leveraging 
shared local knowledge enables the identification of common attack patterns and prop-
erties on a global level. This gained knowledge enables us to reduce the false positive 
ratio by creating fitting detection models. In D5.2, we share anonymised data which is 
the most simple and general form of knowledge distribution compared to the delivera-
bles D5.4 (Global Model based on Shared Local Models) and D5.6 (Global Model with-
out Sharing Local Models) which require trained machine learning models for either 
sharing the model itself or for sharing intelligence derived from a model (e.g., model 
predictions in the teacher-student setting or weight updates during federated learning). 
Thus, in this deliverable we are able to leverage anonymised data sharing in order to 
increase the performance of various detection types, not just those based on traditional 
machine learning. In order to investigate the benefit of privacy-preserving sharing of 
information we make use of the following three use cases which were already defined 
in D3.4, D3.5, and D5.1 (Algorithms for Analysis of Cybersecurity Data):  

• Domain Generation Algorithm (DGA) Detection 
• Application Profiling 
• Anomalous Login Activity Detection 

As any kind of sharing activity may create an attack surface that could allow an attacker 
to retrieve private information from the shared object, we investigate the privacy impli-
cations of the sharing approaches in the DGA detection use case. In the preliminary 
version of this Deliverable (D5.1) the landscape of attacks on privacy for machine 
learning was summarised in a brief but formal overview. We identify the Data Inference 
class as the relevant attack class for the sharing scenario in this deliverable. In order 
to avoid further repetition, we refer the reader to Deliverable D5.1 for details about the 
machine learning privacy attack landscape. 

 Domain Generation Algorithm (DGA) Detection 

We use the Domain Generation Algorithm (DGA) detection use case to analyse and 
compare the benefit of private data sharing within the deliverables D5.2 (global model 
based on shared anonymised data), D5.4 (global model based on shared local mod-
els), and D5.6 (global model without sharing local models). In addition, we investigate 
the privacy implications caused by data sharing for this use case in all three delivera-
bles. As a consequence, the three deliverables share the same texts for sections that 
include general information such as background on DGA detection, state-of-the-art 
classifiers, or parts of the evaluation setup. However, sections that depend on the dif-
ferent sharing scenarios, such as the actual evaluation and the privacy study, are spe-
cific to each deliverable. 

We presented DGA detection in D3.4 (Algorithms for Analysis of Cybersecurity Data) 
in detail. Additionally, we discussed the most important aspects in the initial version of 
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 this deliverable. However, since the following information is essential to understand 
the evaluation and the privacy analysis, we shortly repeat the most important parts. 

Note, we have published the results of our comprehensive study on collaborative ma-
chine learning for DGA detection in the research paper "The More, the Better? A Study 
on Collaborative Machine Learning for DGA Detection" [22]. Therefore, parts of the 
following sections were previously published in and adapted from [22]. 

3.1.1 Background 

Modern botnets rely on DGAs to establish a connection to their command and control 
(C2) server. In contrast to using individual fixed IP-addresses or fixed domain names, 
the communication attempt of DGA-based malware is harder to block as such a mal-
ware generates a vast amount of algorithmically generated domains (AGDs). The bot-
net herder is aware of the generation scheme and thus is able to register a small subset 
of the generated domains in advance. The bots, however, query all generated AGDs, 
trying to obtain the valid IP-address for their C2 server. As most of the queried domains 
are not registered, the queries result in non-existent domain (NXD) responses. Only 
the domains that are registered by the botnet herder in advance resolve successfully 
to a valid IP-address of the C2 server.  

The occurring NXDs within a network that are caused by the non-resolvable queries 
can be analysed in order to detect DGA activities and thereby allow to take appropriate 
countermeasures even before the bots can be commanded to participate in any mali-
cious action. This detection is, however, not trivial, since NXDs can also be the product 
of typing errors, misconfigured or outdated software, or the intentional misuse of the 
DNS e.g. by antivirus software. In the following, we refer to this detection in which we 
separate benign from malicious domain names as the DGA binary classification task.  

In addition to this binary classification task, it is useful to not only detect malicious 
network activities but also to attribute the malicious AGDs to the specific DGAs that 
generated the domain names. This enables the malware family used to be narrowed 
down and targeted remediation measures to be taken. In the following, we refer to this 
classification as the DGA multiclass classification task. 

In the past, several approaches have been proposed to detect DGA activities within 
networks. These approaches can be split into two groups: contextless and context-
aware approaches. In SAPPAN, we focus on contextless approaches (e.g. [1, 2, 3, 4, 
5, 6]), as they entirely rely on information that can be extracted from a single domain 
name for classification. Thereby, they are less resource intensive and less privacy in-
vasive than context-aware approaches (e.g. [7, 8, 9, 10, 11, 12]) that depend on the 
extensive tracking of DNS traffic. Even though the classification of the contextless ap-
proaches relies solely on the domain name, they are able to compete with the context-
aware approaches and achieve state-of-the-art performance [1, 2, 4, 5, 6]. 

A variety of different types of machine learning techniques have been proposed for the 
classification of domain names which can be divided into two groups: feature-based 
classifiers (e.g. [2, 7]) and deep learning (featureless) classifiers (e.g. [1, 4, 5, 6]). While 
the deep learning classifiers outperform the feature-based approaches in terms of clas-
sification performance [4, 5, 13, 14, 15], their predictions cannot be explained easily. 
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 For example, the predictions of a decision tree can easily be traced back to the indi-
vidual features used to classify a domain name. Such a simple explanation is not pos-
sible for the predictions of a deep learning model. However, feature-based approaches 
rely on specific features that are hand-crafted using domain knowledge. The engineer-
ing of these features requires much more effort compared to the usage of deep learning 
classifiers where all important information has to be encoded and provided to the 
model. Moreover, after the feature engineering, the best combination of features has 
to be selected which is not a trivial task. 

While the feature-based and deep learning-based approaches differ in their classifica-
tion capabilities, they might also provide different privacy guarantees when trained on 
shared private data. Thus, we evaluate and compare feature-based as well as deep 
learning-based approaches. 

In our evaluation, we include classifiers which were developed within the SAPPAN 
project. In detail, we include the two ResNet-based classifiers [16] that we introduced 
in Deliverable D3.4 (Algorithms for Analysis of Cybersecurity Data). There, we demon-
strated that our classifiers achieve better classification scores (f1-score/false positive 
rate) than the state-of-the-art classifiers described in related work. In order to counter-
act the explainability problem of deep learning classifiers, we have developed a visual 
analytics system [AD17] in SAPPAN, which tries to bridge the gap between the predic-
tions of deep neural networks and human understandable features. The results are 
presented in Deliverables D3.8 and D3.9. 

3.1.2 Selected State-of-the-Art Classifiers 

In the following, we present several state-of-the-art classifiers which we use in different 
sharing scenarios to (1) measure the benefit of private data sharing in terms of classi-
fication performance and (2) analyse the provided level of privacy of the collaboratively 
trained classifier.  

First, we present the currently best contextless feature-based approach for DGA binary 
classification. We then continue with different types of deep learning classifiers includ-
ing convolutional (CNNs), recurrent (RNNs), and residual neural networks (ResNets). 

FANCI 

Schüppen et al. [2] proposed a system called Feature-based Automated NXDomain 
Classification and Intelligence (FANCI). It is capable of separating benign from mali-
cious domain names. FANCI implements an SVM and an RF-based classifier and 
makes use of 12 structural, 7 linguistic, and 22 statistical features for DGA binary clas-
sification. The authors of FANCI state that it uses 21 features, but feature #20 is a 
vector of 21 values, resulting in 41 values in total. The 41 features are extracted solely 
from the domain name that is to be classified. Thus, FANCI works completely context-
less. FANCI does not incorporate DGA multiclass classification support. 

Endgame 

Woodbridge et al. [5] proposed two RNN-based classifiers for DGA binary and mul-
ticlass classification. Both classifiers incorporate an embedding layer, a long short-term 
memory (LSTM) layer consisting of 128 hidden units with hyperbolic tangent activation, 
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 and a final output layer. The last layer of the binary classifier is composed of a single 
output node with sigmoid activation while the last layer of the multiclass classifier con-
sists of as many nodes as DGA families are present. We denote the binary classifier 
by B-Endgame and the multiclass classifier by M-Endgame in the following. 

NYU 

Yu et al. [6] proposed a DGA binary classifier that is based on two stacked one-dimen-
sional convolutional layers with 128 filters for DGA binary classification. We refer to 
this model as B-NYU in the following. We additionally adapted the binary model to a 
multiclass classifier by interchanging the last layer similarly to the M-Endgame model. 
Additionally, we use Adam [18] as an optimisation algorithm and the categorical cross-
entropy for computing the loss during training. We refer to the multiclass enabled model 
as M-NYU in the following. 

ResNet 

In the context of SAPPAN we developed a binary and a multiclass DGA classifier 
based on ResNets [16]. We presented all details as well as a comparative evaluation 
with the state-of-the-art in Deliverable D3.4 (Algorithms for Analysis of Cybersecurity 
Data). ResNets make use of so-called skip connections between convolutional layers 
which build up residual blocks. These blocks allow the gradient to bypass layers unal-
tered during the training of a classifier and thereby effectively mitigate the vanishing 
gradient problem [19, 20]. Our proposed binary classifier, B-ResNet, consists of a sin-
gle residual block with 128 filters per convolutional layer while our proposed multiclass 
classifier M-ResNet has a more complex architecture of eleven residual blocks and 
256 filters per layer. 

Class weighting 

Tran et al. [4] showed that the model of Woodbridge et al. [5] is prone to class imbal-
ances which reduce the overall classification performance of the DGA multiclass clas-
sifier. The authors mitigate the effect of class imbalances by using the proposed class 
weighting: 

 

The class weights control the magnitude of the weight updates during the training of a 
classifier. The rebalancing parameter γ denotes how much the dataset should be re-
balanced. Setting γ = 0 makes the model behave cost-insensitive, setting γ = 1 makes 
the classifier treat every class equally regardless of the actual number of samples per 
class included in the training set. Tran et al. empirically determined that γ = 0.3 works 
well for DGA multiclass classification. In all our experiments we thus use γ = 0.3 when 
working with cost-sensitive models. We denote deep learning models which incorpo-
rate class weighting with the suffix “.MI”. 
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 3.1.3 Data Sources 

The main goals of our evaluation are (1) to determine whether we can improve the 
classification performance by leveraging different approaches for private information 
sharing, (2) to quantify the level of privacy after enabling privacy-preserving tech-
niques, and (3) to quantify the loss in utility after enabling privacy-preserving tech-
niques. 

For Deliverables D5.2, D5.4, and D5.6 we use the same evaluation setup (i.e. the same 
classifiers and datasets) in order to guarantee comparability of different information 
sharing scenarios for the use case of DGA detection. 

In total, we use five different data sources, four for obtaining benign data and one for 
malicious data. 

Malicious data 

We obtain malicious domains from the open-source intelligence feed of DGArchive [21] 
which contains more than 126 million unique domains generated by 95 different known 
DGAs. We make use of all available data up to 2020-09-01. 

Benign data 

We obtain benign labelled NXDs from four different sources. Three of the sources are 
networks of project partners, namely CESNET, Masaryk University, and RWTH Aa-
chen University. As real-world benign training data from different sources is very diffi-
cult to obtain but crucial for a comprehensive study on collaborative machine learning, 
we tried to get additional data from other parties. Fortunately, Siemens AG, a partner 
in another research project, provided us with additional data for our analysis. Due to 
this rich data, we are able to conduct collaborative machine learning experiments that 
are similar to a real-world setting. Moreover, the different benign data sources enable 
us to investigate whether collaboratively trained classifiers generalize well to different 
networks. 

For data obtained from each of these sources we perform a simple pre-processing step 
in which we remove all duplicates, cast every domain name to lowercase (as the DNS 
operates case-insensitive), and filter against our malicious data obtained from 
DGArchive to clean the data as far as possible. Additionally, we remove the intersec-
tion of all obtained samples from two of our benign data sources, namely from CESNET 
and Masaryk University. The reason for this is that the networks of both parties are 
interconnected and the recording period for data collection overlaps. Note, thereby we 
are also removing samples from both data sources which would naturally be present 
in both networks even when they were not interconnected. Such samples could be 
common typing errors of popular websites. This issue could have an effect on the clas-
sification performance of a classifier when samples of these networks are used for 
training or classification. However, since we record NXDs, we filter significantly fewer 
samples than if we were to record resolving DNS traffic. Thus, this effect could only 
have a negligible influence on the classification performance, but this has yet to be 
investigated. In the following we list the recording periods and the number of unique 
samples obtained from each source for benign data. 
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 RWTH Aachen University: We obtained a one-month recording of September 2019 
from the central DNS resolver of RWTH Aachen University which is located in Ger-
many. This recording comprises approximately 26 million unique benign NXDs that 
originate from academic and administrative networks, student residences' networks, 
and networks of the university hospital of RWTH Aachen.  

Masaryk University: We obtained a one-month recording from mid-May 2020 until 
mid-June 2020 from the networks of Masaryk University which is located in the Czech 
Republic. This recording contains approximately 8 million unique benign samples.  

CESNET: We received additional benign samples from CESNET: An association of 
universities of the Czech Republic and the Czech Academy of Sciences consisting of 
27 members in total. CESNET operates and develops the national e-infrastructure for 
science, research, and education. From this data source, we obtained a subset of ob-
served NXDs from the day recording of 2020-06-15. In total, we obtained approxi-
mately 362k unique samples.  

Siemens: We obtained a one-month recording of July 2019 that comprises approxi-
mately 21 million unique NXDs from several DNS resolvers of Siemens AG which is a 
large company that operates in Asia, Europe, and the USA. 

3.1.4 Sharing Approaches 

In each deliverable (D5.2, D5.4, D5.6), we investigate different sharing scenarios for 
the use case of DGA detection. In the initial version of this deliverable, we envisioned 
three different sharing scenarios: 

3.1.4.1 Sharing of anonymised domain names using the URL generalization 
technique developed in D3.6 

As a part of Deliverable D3.6 (Cybersecurity Data Abstractions - Initial Version), a Py-
thon commandline tool has been developed to transform URLs into abstracted pseudo-
URLs. These resulting abstractions of URLs do not contain privacy-critical information 
anymore, but are still suitable to be used as training data for machine learning, as 
shown by the results of experiments that have been presented in D3.6. The scope of 
D3.6, however, was set to sharing of trained classifiers. For an attacker, this means 
that there are two complicating factors for the extraction of privacy-critical information: 
The abstraction of the URLs and the extraction of training data from the classifier. Since 
this deliverable considers sharing of training data, the second factor does not apply 
anymore. We consequently solely rely on the abstraction of training data. 

3.1.4.2 Sharing of extracted features of feature-based approach FANCI 

In this scenario, we utilise FANCI’s feature extraction method as a form of data anon-
ymisation. This type of data anonymisation will have no impact on the classification 
performance of feature-based classifiers compared to the models which were trained 
using non-anonymised data (i.e., domain names in cleartext). Other anonymisation 
techniques might have a negative impact on the classification performance. However, 
it is unclear whether feature extraction is an appropriate approach for data anonymisa-
tion. Thus, in this deliverable we perform an extensive study investigating the privacy 
implications of using this approach. 
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 3.1.4.3 Feature Extractor Sharing (sharing of first-n-layers of deep learning clas-
sifiers) 

Based on the previous scenario, we designed an approach for sharing extracted fea-
tures in the context of deep learning-based classifiers. We assume that the first-n-
layers of a deep neural network are used as a sort of feature extractor while the rear 
layers are used for the actual classification. 

In Fig. 2 we display such a layer partition.  

 

Fig. 2: Partition of a neural network classifier in feature-extractor and classification layers. 

Every party that is participating in the collaborative training of a classifier in this sce-
nario trains a local DGA detection model using their own private data. Thereafter, each 
party is able to share either the feature extractor (i.e., the classifier’s first-n-layers) or 
data that is anonymised by feeding domain names to the feature extractor. Depending 
on which information is shared, different levels of classification performance and pri-
vacy guarantees can be achieved. In this deliverable we will investigate which sharing 
scenario makes the most sense in terms of classification performance and privacy. A 
possible approach for combining the feature extractors of different neural networks 
belonging to different parties can be seen in Fig. 3.  

Here, each participant combines their own and received feature extractors to a new 
model. To this end, the feature extractors are applied in parallel and their outputs are 
concatenated and flattened. Additionally, a new dense classification layer is appended 
to the new model. This classification layer is not trained yet, thus the organisations 
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 freeze the weights of the feature extractors and use local training data to train the 
classification layer separately. 

 

Fig. 3: Approach for combining feature extractors of different neural networks and parties. 

3.1.4.4 Privacy  

In D3.6 (Cybersecurity Data Abstraction), the set of benign training samples has been 
identified as the main privacy-critical aspect of this use case. Our binary DGA detection 
models are trained on non-resolving DNS traffic, i.e., NXD samples, labelled either 
benign or malicious. The benign NXDs (the samples labelled as benign) are privacy 
sensitive data, as they must be collected locally at some resolver. The benign samples 
may disclose sensitive information about (1) end-user browsing history or behaviour, 
and (2) usage of out-dated / misconfigured software. Further, knowledge of frequently 
occurring benign NXDs originating from user typos may be leveraged for personalized 
phishing attacks by an adversary. Additionally, the knowledge of NXDs generated by 
misconfigured or outdated software could be leveraged by an adversary to attack the 
organisation’s network. Due to these privacy issues, it is obviously not possible to di-
rectly share benign NXDs in a collaborative ML setting for DGA detection. Thus, we 
focus in the following on the sharing of private benign labelled data. Preliminary work 
on privacy assessment has been conducted in the previous deliverable version which 
is completed in this document. 
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 3.1.5 Analysis and Discussion of Sharing Scenarios 

Experiments have shown that classifiers trained on domain names that have been 
anonymised using the URL generalization technique developed in D3.6 show worse 
accuracy and detection performance, and yield higher false positive rates than (1) clas-
sifiers that are trained on extracted features of the feature-based approach FANCI and 
(2) collaborative machine learning approaches developed in D5.4 and D5.6. In con-
trast, using extracted FANCI features for classifier training results in no loss in classi-
fication performance compared to using non-anonymised data (i.e., domain names in 
cleartext). However, it remains to be determined whether feature extraction is an ap-
propriate approach for data anonymisation.  Therefore, in the following, we focus on 
an extensive study which investigates the privacy implications of using this approach.  

During the initial version of this deliverable, we envisioned the usage of feature extrac-
tors (first-n-layers) derived from deep learning-based classifiers for anonymising do-
main names. After analysing this approach, we decided to relocate Feature Extractor 
sharing to Deliverable D5.4 due to the following reasons: 

1. Sharing data anonymised by this approach without sharing the actual feature 
extraction is insufficient for collaborative learning. Experiments have shown that 
participants cannot make use of data shared by other organisations as their 
locally trained models are optimised to different optima. Without sharing the ac-
tual feature extractors participants cannot recover any useful intelligence out of 
the anonymised data. 

2. Sharing anonymised data along with the feature extractors is a major privacy 
breach as parties can train an autoencoder which is able to recover domain 
names out of the anonymised data with high accuracy. 

3. Sharing the actual feature extractors for collaborative machine learning fits nat-
urally better in D5.4 in which trained models are exchanged as feature extrac-
tors are de facto parts of trained classifiers. 

However, in favour of completeness, we still briefly comment on deep learning feature 
extractors after our extensive study on the privacy of sharing domain names that are 
anonymised by FANCI's feature extractor. 

In summary, for the privacy preservation of domain name data used for DGA detection 
we present two approaches: The first encodes the domain names with provable pri-
vacy-preserving measures. However, here a non-negligible impact on the detection 
performance is accompanied. Thus, we focus on the second approach which analyses 
the privacy capability of the feature representation of an existing feature-based DGA 
classifier. Thereby, the classification performance of the feature-based approach re-
mains untouched while the privacy guarantee must be quantified. 

3.1.6 Sharing FANCI Features: A Privacy Analysis of Feature Extraction for DGA 
Detection 

In the following we present our work that was partially presented in Deliverable D5.1. 
We focus on finalisation of the relevant privacy threats from the Data Inference attack 
class, namely (Group) Membership Inference and Reconstruction, which were also 
presented in Deliverable 5.1. 
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 3.1.6.1 Group Membership Inference 

The threat of Group Membership has already been partially assessed in Deliverable 
5.1. To recite, the goal of this attack is to identify clusters in the feature space that 
correlate with expected origins of the NXD data. Those origins were described as: 

1. End-user typing errors while browsing 
2. Misconfigured or out-dated software active in the network 
3. Benign DGAs active in the network 

Random and PC projections were both used to visualise patterns in the data and re-
sults are presented in D5.1 We concluded that the visualisation does not form distinc-
tive groups and that other methods could be leveraged to achieve a better distinction. 

 

Fig. 4: Embeddings of benign NXD data for different data sets: first column: RWTH, second col-
umn: MU, third column: CESNET. 

Therefore, we provide results from additional embedding methods, such as locally lin-
ear embedding [36], random tree embedding and t-SNE [37] initialised with a PCA 
embedding, in Fig. 4. 

It can be observed that general patterns share similarities independent of the data set 
on which the embedding was performed. In any case, we cannot identify clear clusters 
that could correlate the data with the suspected origins listed above. As the data is not 
labelled by its true origin it is difficult to assess what the semantics of clusters are, e.g., 
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 there are many small spherical clusters in the t-SNE embedding. Finally, we can con-
clude that there is no clear threat against the FANCI feature representation with respect 
to the inference of the origin group of benign labelled NXD data. 

Hence, in this final version of Deliverable 5.2, we focus on concluding the privacy anal-
ysis with regard to prevention of Reconstruction attacks. 

3.1.6.2 Privacy Analysis via a Data-Driven Reconstruction Approach 

In a Reconstruction attack, the adversary wishes to infer the original sample from a 
feature representation, which is why a privacy-preserving representation of the data is 
required, i.e., a representation that does not allow for a successful reconstruction at-
tack while also retaining high utility for the DGA detection use case. 

The aim is to assess the privacy threat associated with a Reconstruction attack with 
respect to sharing data in the representation of FANCI features. This is performed from 
two different angles: (1) A manual, handcrafted reconstructions process and (2) a data-
driven reconstruction approach that includes training a machine learning model on the 
reconstruction task. Both assessments are conducted with the same overarching goal: 
Our main research focus is set on the assessment of whether the data transformation 
performed by the FANCI feature extractor can also yield a data abstraction that is suf-
ficiently abstract to hide sensitive information. If the analysis results in a positive con-
clusion, the feature representation of domain names has its practicability towards pri-
vacy-preserving intelligence sharing. Concretely, this would allow for risk-free publica-
tion of sensitive NXD data in the form of FANCI's feature representation and would 
thus enable to provide data-privacy in the otherwise privacy-concerning approach of 
sharing raw data. As research on the feature representation's classification perfor-
mance is already conducted in the original work [2], we complement it with an investi-
gation on whether FANCI's public feature extractor is prone to malicious inversion. 
More concretely, we ask whether knowledge of FANCI features threatens the disclo-
sure of the original domain names as these could be reconstructable from feature vec-
tors. 

Thereby, we work under the following attack model: We formally refer to the feature 
extractor as a function E: S → F mapping domains from S to the feature space F, 
where S is the set of strings over the 39-character alphabet with lengths up to 253 (in 
accordance with RFC 1035 [40]). The context in which the following experiment is con-
ducted is defined by the following aspects: 

1. We assume an adversary that is interested in learning the real inputs to the 
FANCI feature extractor E: S → F for a foreign feature set E(S') = F'⊂ F of a 
target's domain name data set S', i.e., for any E(s) = f∈F, the adversary aims to 

find a corresponding s'∈S such that E(s') = f holds and some closeness s' ≈ s is 
satisfied (Note, that finding just any s'∈S with E(s') = f is trivial). 

2. The adversary is semi-honest, i.e., he reliably participates in any sharing sce-
nario through which he acquires the foreign feature set. 

3. The feature extractor is public knowledge. 
4. We only consider the disclosure of benign NXDs as privacy critical. 
5. We assume feature sets are shared in the clear, hence no interaction with the 

target is required. 
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 6. We allow the adversary to be in possession of an arbitrary large data set S''⊂ S 
of benign NXDs that does not intersect with the target's data, i.e., S'' ∩ S' = ∅. 

7. We do not restrict the adversary's computational power that he may apply to his 
own data. Hence, we allow the adversary to train an ML model. 

Aspects 6. and 7. are of course only relevant to the second assessment, the data-
driven reconstruction approach. 

The first assessment, the manual approach of reconstructing the feature extractor pro-
cess, has already been presented in the previous version of this deliverable. There, 
we demonstrated the approach of manually combining feature values to gain more 
knowledge of a feature vector's pre-image. This approach ultimately fails due to infor-
mation about the character frequency being lost in the feature extraction process, i.e., 
the information compression in FANCI's feature extractor is lossy enough to impede a 
reliable reconstruction on the basis of a single sample. We quantify the compression 
rate as a quotient of the sizes of the domain and codomain spaces of the feature ex-
traction function. Under the assumption that the elements of the codomain are uni-
formly distributed among the elements of the function's domain, we concluded that, 
with |S|=3.55 · 10402 and |F|= 2.71 · 1065, on average |S|/|F| ≈ 10337 many pre-images, 
i.e., domain names, exist for every feature vector [39]. In reality however, elements of 
codomain (feature vectors) are not uniformly distributed. The distribution is better de-
scribed by representative data. Subsequent to the manual approach, these insights 
motivate to analyse the effectiveness of a reconstruction guided by such representative 
data. Hence, in this deliverable the focus lies on such a data-driven reconstruction 
approach. 

In such an approach, the attacker formally has the goal to train a machine learning 
model on the task of domain sample reconstruction (i.e., learning an inverse mapping 
E-1|R: F → S on subset R) using an attack set of benign NXDs and their corresponding 
feature vectors {(fi, si)i=0,...,n}⊂ F x S. This is a realistic scenario in any sharing use case 
where a party receiving a feature set may also be in possession of an own data set of 
benign NXDs (exactly as described in the attack model). In principle, the feature ex-
traction process is assumed to be unknown to the model, and we let it learn the inverse 
mapping without any domain-specific assistance. 

For the evaluation of such a data-driven reconstruction, however, we so far only pre-
sented an idea for an experimental evaluation framework in the last version, which 
included a proposition for a quantitative and normalized metric that measures the suc-
cess of a reconstruction attack. In the meantime, we have already concluded and dis-
seminated our work on the privacy analysis, as proposed in Deliverable 5.1, in an ac-
cepted conference paper [39]. Here we would thus like to present results from the pa-
per, while first detailing updates and extensions to the previously described evaluation 
setup and evaluation methodology in a concise manner. Therefore, we use passages 
from our disseminated work [39]. 

Setup & Methodology 

Essential aspects of the feature extractor are briefly presented in the following: We 
utilise the most recent open-source implementation of FANCI's feature extractor [39], 
which extracts 15 structural, 8 linguistic, and 22 statistical features from domain names. 
For completeness, a listing of the features is again provided in Table 1. The extraction 
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 process recognises 39 unique characters (letters a-z, digits 0-9 and special characters 
dot, hyphen and underscore). 

Feature Feature Name Data Type Normalization Factor 

0 length int 253 

1 1_part bool 1 

2 2_part bool 1 

3 3_part bool 1 

4 4_part bool 1 

5 vowel_ratio float 1 

6 digit_ratio float 1 

7 contains_ipv4_addr bool 1 

8 contains_digits bool 1 

9 has_valid_tld bool 1 

10 contains_one_char_subdomains bool 1 

11 contains_wwwdot bool 1 

12 subdomain_lengths_mean float 253 

13 prefix_repetition bool 1 

14 char_diversity float 1 

15 contains_subdomain_of_only_digits bool 1 

16 contains_tld_as_infix bool 1 

17 1_gram_std float 1_gram_max 

18 1_gram_median float 1_gram_max 

19 1_gram_mean float 1_gram_max 

20 1_gram_min float 1_gram_max 

21 1_gram_max float 1_gram_max 

22 1_gram_perc_25 float 1_gram_max 

23 1_gram_perc_75 float 1_gram_max 
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 24 2_gram_std float 2_gram_max 

25 2_gram_median float 2_gram_max 

26 2_gram_mean float 2_gram_max 

27 2_gram_min float 2_gram_max 

28 2_gram_max float 2_gram_max 

29 2_gram_perc_25 float 2_gram_max 

30 2_gram_perc_75 float 2_gram_max 

31 3_gram_std float 3_gram_max 

32 3_gram_median float 3_gram_max 

33 3_gram_mean float 3_gram_max 

34 3_gram_min float 3_gram_max 

35 3_gram_max float 3_gram_max 

36 3_gram_perc_25 float 3_gram_max 

37 3_gram_perc_75 float 3_gram_max 

38 hex_part_ratio float 1 

39 underscore_ratio float 1 

40 alphabet_size int 38 

41 shannon_entropy float log2(alphabet_size) 

42 ratio_of_repeated_chars float 1 

43 consecutive_consonant_ratio float 1 

44 consecutive_digits_ratio float 1 

Table 1: Features extracted by the open source implementation of the FANCI feature extractor 
[41]. The normalisation factor is the value used to normalise the feature value to 
the range [0, 1]. 

As noted in Table 1, the implementation of some features deviates from the definition 
in the original paper [2]: For instance, feature _contains_ipv4_addr_ should also regard 
IPv6 addresses. Many of FANCI's features are computed on the Dot-free public-Suffix-
Free (DSF) part of the domain which excludes both dot characters and the public valid 
suffix, which is usually the Top-Level-Domain (TLD). The validity of a suffix (valid_tld) 
is determined by checking against a predefined list that is included in the feature ex-
tractor. 
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 Reconstruction Quantification 

In Deliverable 5.1 we presented existing members from the family of edit distances on 
the string space as candidates to compare pairs of original and reconstructed samples. 
We find that the Damerau-Levenshtein is best suited for this use case, as variable-
length samples are compared. Damerau-Levenshtein computes a minimum-change 
distance via the number of character edit operations (substitutions, insertions, dele-
tions or transposition of adjacent characters) required to transform one input string into 
the other. Further, a normalised version for the metric is computed by dividing the re-
sulting minimum-change-distance by the length of the longest of both input strings. As 
the normalised metric is a ratio of edit-operations to string length, it can be interpreted 
as a lower bound on the percentage of misplaced characters in the reconstruction. 
Thereby, the normalised metric expresses a reconstruction error (relative to the string 
length). Note. that this division operation does not threaten the metric's triangle ine-
quality. In fact, all axioms of the original Damerau-Levenshtein metric are retained. 

Consequently, if the metric value equals zero, then this indicates equality, while dis-
similarity grows in parallel to larger metric values. Attack success can now be meas-
ured by an aggregation, e.g., the average, of the per-sample reconstruction errors over 
an NXD data set used for evaluation. It is important to note that the suggested normal-
ised metric solely operates on a syntactical level. Human readable alternative spell-
ings, as for instance leetspeak, are not considered by this syntactical comparison. 
However, construction of a quantification that regards semantic differences between 
samples requires either a data-driven approach which comes with risk of overfitting 
and other biases, or a sufficient extent of work from the area of psychology. Hence, 
the syntactical metric will serve as a sufficient indicator of attack success. 

Evaluation Loop Setup 

In the following experiment, we assess the reconstruction performance of trained Deep 
Learning reconstruction models using the above-mentioned distance metrics. More 
concretely, we train a model for each one of the benign data sources and evaluate 
each of these models against all the data sources including the one on which the indi-
vidual model was trained on. For each pair of training and evaluation sets we average 
each metric's scores over all samples (see Fig. 5). Thereby, we assess the models' 
capability to reconstruct domains from foreign feature sets. 

The three real-world benign NXD data sets are used as representative privacy sensi-
tive data for this experiment. We use each set to train an attack model and evaluate 
each attack model against all three data sets resulting in 9 evaluations. 
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Fig. 5: Evaluation Loop Setup: First a reconstruction model is trained on an attack set, then the 
reconstruction model is evaluated over an evaluation set. Original and recon-
structed domain names are compared via the Damerau-Levenshtein distance. 

Benign NX Data Records 

True pre-image distributions and domain-feature relations are best described by rep-
resentative data sets. To provide significance to our results, we make use of three 
large real-world NXD sets. We leverage these data sets two-fold: (1) We use this data 
to train a machine learning model on the reconstruction task. (2) The data is used as 
ground truth to assess the reconstruction capability of the trained reconstruction mod-
els.  We use the same DNS recordings already utilised in other deliverables so far. 
Concretely, the benign data sourced by RWTH Aachen University, Masaryk University 
and CESNET (as presented above) are used. We use the complete record of CESNET 
and randomly sub-sample a set in the size of that record from each of the other two 
institutions' records. Note, we do not use any samples from Siemens AG as we ob-
tained the samples after we have started the privacy analysis. 

For the evaluation, the data is prepared as follows: We flatten the representation of the 
feature vector, e.g., for each feature that is represented as vectors (such as small num-
ber_of_subdomains or the one-, two-, and three-gram distribution vectors), we view 
each entry as a single feature. Thereby, our feature count differs slightly from the one 
presented in the original work [2] and we end up with 45-component feature vectors. 
All entries in a FANCI feature vector are in some finitely bounded range of the non-
negative rationales and are normalised to the range of [0,1] by dividing each entry by 
the upper bound of its value range (see last column of Table 1). For model training, 
each data set is prepared as follows: The test set is a random 20% split of the total 
data. Another random 5% split of the remaining training data is used as validation set. 
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 Domain name strings are encoded to character sequences with start and end markers. 
This is done to encode the bounds of the target output sequences during training, i.e., 
the token-wise decoding process begins with a start marker and can be stopped once 
the end marker is encountered or predicted. 

Model Architecture 

To realise a model that can fulfil the reconstruction task, we leverage a model archi-
tecture from the Sequence-to-Sequence learning (Seq2Seq) area in machine learning. 
Seq2Seq encompasses encoder-decoder models that solve machine learning tasks 
related to mapping variable-length input sequences to variable-length output se-
quences [40, 41]. Both the encoder and decoder of a Seq2Seq architecture utilise re-
current units to process the variable-length sequences and work together as follows: 
The encoder consumes and compresses the input sequence to a fixed-length state 
while the decoder is trained to create the target sequence from this state. To use such 
a model, the domain name strings must be transformed into character sequences with 
corresponding start and end markers. 

At test time a sequence can be sampled from the decoder of a trained Seq2Seq model, 
i.e., beginning with the start marker, the model iteratively predicts the next character 
with the currently sampled prefix as prior. This sampling technique is commonly re-
ferred to as closed-loop, since the predicted characters are fed back into the model at 
each step. Seq2Seq approaches have proven to be very successful in use cases such 
as machine translation. The reconstruction of a variable-length domain sample from a 
fixed-length feature vector requires a model that performs like a decoder in a Seq2Seq 
setup. All models share the following architecture (depicted in Fig. 6) whose design 
follows a related approach [43]. 

 

Fig. 6: Model architecture of the Seq2Seq2 style decoder for reconstruction. 

The architecture begins with two parallel sequences of two dense layers with 200 units 
each. This leaves opportunity for the model to manipulate the representation of the 
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 input feature vector before the two outputs are used as the initial states for the recurrent 
unit in the decoder. For the recurrent unit, a single Long Short-Term Memory (LSTM) 
layer with 200 units is used. The model ends with a dense layer of size 42 and a soft-
max activation to output a prediction vector over all relevant characters. The output 
encodes the 39 recognized domain characters plus start, end and empty markers used 
internally for the character sequence encoding of domain name strings. Finally, the 
total architecture comprises 301,642 trainable weights. 

Training Setup 

A batch size of 64 is fixed in our experiments for a good balance between training time 
and model performance. Models are trained using the cross-entropy loss to penalize 
wrong character predictions. A superordinated focal loss, which dynamically down-
weighs well-classified samples in the cross-entropy loss during training, is used to 
counter a potential unbalance-bias [44]. The training process of the decoder model is 
steered by the RMSprop optimiser with parameters learning_rate=0.001, rho=0.9, mo-
mentum=0.0 and epsilon=1e-07. Each model is trained for at most 1000 epochs, while 
the training data is shuffled after each epoch and training is stopped early whenever 
10 consecutive epochs without improvement of the validation loss are exceeded. 

We employ Teacher Forcing to train the decoder, which is the common training meth-
odology in Seq2Seq learning [45]. This method essentially sets the input of the decoder 
to the target sequence shifted by one time step (open loop) instead of feeding the 
decoder's predictions of previous time steps back into the model (closed loop). Thereby 
the model predicts each next character based on the correct prior character sequence 
and not the predicted one. 

Reconstruction Results 

Network Data Source Averaged Reconstruction Performance 

Training Data Evaluation Data Damerau-Levenshtein normalized Damerau-Levenshtein 

 

RWTH 

RWTH 47.85 0.51 

MU 23.22 0.72 

CESNET 20.61 0.66 

 

MU 

RWTH 72.94 0.75 

MU 15.00 0.53 

CESNET 18.61 0.61 

 

CESNET 

RWTH 62.07 0.67 

MU 20.01 0.65 

CESNET 13.66 0.46 

Table 2: Averaged closed-loop reconstruction performance of trained reconstruction models. 
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 Averaged closed-loop reconstruction performance for all combinations of trained mod-
els and evaluation sets are given in Table 2. 

Baseline Reconstruction Performance 

The baseline cases are what we refer to when the evaluation data is equal to all the 
data used to train, validate and test the model, and is to be interpreted as baseline 
reconstruction performance of a trained model. 
Baseline cases are rows in the table with highlighted data sets. 

Although the models achieve a significant reduction in training and test loss during 
model training, the reconstruction performance is not very good: For RWTH, MU and 
the CESNET data sets we measure that on average respectively 47.85, 15.00 and 
13.66 character edit operations separate each original domain and its reconstruction. 
The normalised version of the metric measures an average error for RWTH and MU 
that is just larger than 0.5, i.e., on average at least 50% of characters in each recon-
struction are incorrectly predicted. For CESNET, we measure a slightly smaller aver-
age score of 0.45. In general, it seems that the models' baseline reconstruction perfor-
mance is similarly bad on all data sets. 

Transferability 

The trained models' reconstruction performance on data from foreign networks can be 
found in the remaining lines in Table 2. These are the transferability cases, i.e., exactly 
the scenario which we describe in our attack model. 
In the transferability cases the reconstruction error is higher than in the baseline cases 
(score higher than 0.65) with the worst performance (0.75) in the case where the model 
trained on data from RWTH is evaluated on that of MU. 

Discussion on Reconstruction Results 

A discussion that reasons about the cause of such bad reconstruction performance is 
also added at this point. The mathematical review of the feature extraction process in 
the manual analysis highlighted that it is plausible that the overall reconstruction per-
formance is poor: After all, FANCI's feature extractor considers only very few features 
and thereby has a very high compression rate. While this might be tolerable for good 
classification performance, it seems to hinder good reconstruction quality. Arguments 
towards a quantifiable proof that extractor function E is not injective when restricted to 
the subspace of real-world benign NXDs is presented in the following. 

Feature Space Overlap 

While in our experiments the adversary and target NXD data sets are disjunct, the 
corresponding sets of feature vectors of each respective data set must not be disjunct 
sets. A large overlap in the feature space most certainly leads to a degraded recon-
struction performance, as for the same feature vector the model may learn to recon-
struct a domain different from the one the adversary wants to sample at test time. 
Hence, a quantification of the overlap in feature space for the three data sets used in 
this study is presented in Table 3. 
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 Network Data Source Feature Space Overlap 

Training 
Data 

Evaluation 
Data 

#unique Feature 
Vectors in train-
ing data 

Training ∩ 
Evaluation 

% of Evalu-
ation Data 

#unique Fea-
ture Vectors 
in total data 

% of total 
data 

RWTH 

RWTH 

288118 

- - 

3462 

 

10.3 

MU 5789 32.9 

CESNET 4809 12.1 

MU 

RWTH 

182786 

5789 11.5 

 

30.7 

MU - - 

CESNET 12985 41.8 

CESNET 

RWTH 

169921 

4809 24.6 

 

22.9 

MU 12985 30.9 

CESNET - - 

Table 3: Feature space overlap of the three training data sets. Right hand side lists the unique 
feature vectors per set or intersection of sets and the corresponding relative 
share that this intersection makes up of the evaluation or total data. 

Although every data set contains approximately 362k unique samples, the amount of 
unique feature vectors is significantly lower which clearly indicates collisions in the 
feature space. Additionally, for every combination of two distinct NXD data sets we 
have an intersection of non-trivial size in the feature space, e.g., 11.5% of MU's data 
intersects with RWTH's and 41.8% with that of CESNET. Actually, the worst-perform-
ing baseline and transferability reconstructions (training data sourced at MU) coincides 
with the largest feature space overlap with regard to all data sets (see Table 3). 

Top 10% Reconstructions 

We would like to estimate what the adversary's theoretical information gain for well-
reconstructed domains is. In reality, the adversary has no clear way of estimating the 
confidence of a single reconstruction without ground truth. In our experimental setting 
we can however isolate and inspect the well-reconstructed domain names. Hence, we 
take a closer look at the best 10% of all reconstructions for the transferability cases. 

The average reconstruction performance for the top 10% lies at 0.276. Further, ap-
proximately 45-55% of the top 10% performers are occupied by IPv4 and IPv6 reverse 
DNS lookups and 20-35% by spam-related or other DNS-related services, e.g., DNS 
blacklists. We find the models perform well in reconstructing these types of domains 
because (1) these domains' contents are well-structured, (2) these domains often 
share a large suffix, and (3) they stand out by containing a lot of numerical characters. 
Thus, as they occupy sparse areas of the feature space around features such as a 
high digit_ratio, or low subdomains_lengths_mean, or a True value for features such 
as only_digits_subdomains and contains_ipv4_addr. However, these NXDs do not 
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 necessarily originate from user typos but rather from misconfigured software, which 
would also better explain the high occurrence of these types of domains in the data 
sets. 

We claim that knowledge of reverse look-ups and usage of spam-services is not pri-
vacy-sensitive information. After all, these domains do not reveal any information about 
end-user browsing or sensitive tooling usage in the network from which the data was 
sourced. 

Conclusion on Reconstruction Threat Assessment 

By emulating the logical approach, a data-rich adversary would pursue for reconstruc-
tion, namely training a machine learning model to learn a reconstruction mapping, we 
facilitate a quantification of the extent that the feature representation of FANCI dis-
closes any sensitive information about the original domain names. Analysis shows that 
on average at least half of all characters from a reconstructed domain are already mis-
placed in the baseline cases. Also, the models only perform well on foreign network's 
data for reverse lookups and other not-sensitive NXDs likely originating from miscon-
figured software. Consequently, our results suggest that a machine learning model 
aiding in the attack cannot reliably reconstruct NXDs from foreign networks' FANCI 
feature vectors which would be, however, the main use case in an attack. Therefore, 
FANCI's feature representation does not constitute a considerable privacy threat and 
is well-suited to be used as an alternative representation in sharing benign NXD data. 

3.1.7 Analysis of Deep Learning Feature Extractors 

In the previous version of this deliverable, we announced that the privacy capabilities 
of a feature extractor with a deep learning architecture could be analysed in a similar 
manner. We displace this into the final version of Deliverable D5.4 for the following 
reason: Sharing an alternative representation of data requires making the data trans-
formation process public. While our previously described analysis highlights privacy-
preservation for an extractor of handcrafted features, a deep learning feature extractor 
must again be trained on data. To share data in the feature representation of a deep 
learning extractor requires that either (1) one party provides the extractor model or (2) 
the extractor model must be agreed on with all sharing participants. The former solution 
corresponds to the setting we have analysed for the feature-based feature extractor, 
yet in this case a model with a differentiable function is shared that may be misused 
by an adversary when parties share the data in feature representation later on. Similar 
privacy threats hold for the latter points in which all parties need to agree on a deep 
learning extractor. However, this also implies that the deep learning extractor is actu-
ally a global model trained without sharing of local data or models, which is exactly the 
goal of T5.3. Thereby, results of T5.3 would be required to perform preliminary work 
necessary to accomplish data sharing in T5.1. 

For Task T5.2, however, which involves building a global model by sharing local mod-
els, we investigate an approach that leverages shared trained deep learning feature 
extractors. Hence, a privacy analysis or discussion of such feature extractors has more 
relevance in that scenario and is therefore included in Deliverable D5.4. 
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 3.1.8 EXPLAIN: Feature-based DGA Multiclass Detection Approach 

Since our privacy analysis of the feature-based approach FANCI yielded promising 
results, we developed a contextless and feature-based approach for DGA multiclass 
classification. To the best of our knowledge this is the first contextless and feature-
based multiclass classifier for DGA attribution. The following sections were previously 
published in and adapted from "First Step Towards EXPLAINable DGA Multiclass 
Classification" [23].  

3.1.8.1 Introduction 

Previously, for the DGA multiclass classification task, only deep learning based con-
textless classifiers were published. While these classifiers achieve a very promising 
performance, deep learning classifiers are often said to lead to less well explainable 
predictions compared to feature-based classifiers. In the following, we present EX-
PLAIN [23], the feature-based DGA multiclass classifier developed in SAPPAN. By 
design our feature-based approach is more explainable compared to the deep learning 
classifiers proposed in related work as predictions can be traced back to the charac-
teristics of the used features. Thus, beside the usage of the feature extractor for data 
anonymisation, an additional benefit of using a feature-based approach is explainabil-
ity. 

We describe the engineering of our classifier in detail for the sake of transparency, 
which is a major requirement for explainability. Without a transparent feature engineer-
ing and selection process a feature-based classifier operates similar to a black box. 
The main target user groups for our classifier are security operation centre (SOC) an-
alysts and model developers. SOC analysts potentially benefit from the use of EX-
PLAIN over deep learning approaches when analysing predictions in search for poten-
tial false positives or false negatives. Here, EXPLAIN enables the analysis of the fea-
tures that contributed to the classification result. Model developers, on the other hand, 
heavily profit from the adaptability of our approach. For instance, features can be ad-
justed or new discriminating features can be engineered in order to enable the correct 
attribution of newly discovered DGAs. 

The source code of the classifier, all specific values for each hyperparameter and for 
every developed model, as well as the full list of investigated features including a de-
scription for each individual feature, are publicly available, in order to support more 
research in this area in the future [24]. 

3.1.8.2 Evaluation Overview 

To be able to assess the performance of the developed classifier afterwards, we per-
form a comparative evaluation. In the following, we provide an overview of the used 
classifiers, data sets as well as our experimental setup which includes our used eval-
uation methodology. 

Selected State-of-the-Art Classifiers for Comparative Evaluation 

Next to the previously presented deep learning classifiers (Endgame, NYU, and Res-
Net) we also evaluate the naïve approach of adapting FANCI with its original features 
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 developed for the binary task to a multiclass classifier. While the RF-based implemen-
tation is inherently capable of multiclass classification, the SVM approach requires 
modifications. By reducing the problem of multiclass classification to multiple binary 
classification problems it is possible to enable multiclass classification support for the 
SVM implementation. Here, we either use multiple one-vs.-one (OvO) or one-vs.-rest 
(OvR) classifiers. We refer to the multiclass enabled SVM approaches as M-FANCI-
SVM-OvO and M-FANCI-SVM-OvR in the following. Additionally, to the multiclass en-
abled M-FANCI-RF model we also evaluate M-FANCI-RF-OvO and M-FANCI-RF-
OvR. Additionally, we include for every chosen deep learning-based classifier also a 
cost-sensitive variant for our evaluation. 

Data Sets 

We use the benign samples obtained from RWTH Aachen University and malicious 
labelled samples from DGArchive to create two distinct data sets, one for feature en-
gineering and selection (SetSelection), and one for the final comparative evaluation 
(SetEvaluation). In order to obtain meaningful results for our feature engineering, feature 
selection, as well as for the comparative evaluation, we require that for every included 
DGA in the data set at least 10 unique samples are available. We thus eliminate the 
samples of Dnsbenchmark and Randomloader, for which only 5 samples per DGA 
family are known, from our data. Since we aim for diverse data sets, we randomly draw 
for every remaining DGA in DGArchive at most 20,000 samples. We take all available 
domain names for DGAs for which less than 20,000 samples are known. Additionally, 
we draw 20,000 random samples from our source of benign data. Thereafter, we split 
the selected data evenly across all class labels into two disjoint data sets. The first set, 
SetSelection, is used in the context of feature engineering and selection during the de-
velopment of our proposed classifier. The second set, SetEvaluation, is only used for the 
final comparative evaluation. Each of these data sets comprises approximately 
500,000 samples. 

Experimental Setup 

We use the following software packages for our experiments: Python 3.8.5, scikit-learn 
0.23.2, TensorFlow 2.3.0, Keras 2.4.0, CUDA 10.1, and cuDNN 7.6.5. All deep learning 
models are executed on an NVIDIA Tesla V100 GPU while the feature-based ap-
proaches are executed on 48 CPU cores of two Intel Xeon Platinum 8160 proces-
sors@2.1GHz. Our evaluation is split into two parts. First, we present evaluations con-
ducted during the development of our classifier. We make use of samples included in 
SetSelection in order to engineer and select well performing feature sets. Here, we addi-
tionally perform the hyperparameter optimisation. The results of the evaluations are 
several promising combinations of feature sets and hyperparameters (configurations) 
which will be analysed subsequently. Thereafter, we compare our best performing 
classifier configurations with the various state-of-the-art classifiers proposed in related 
work using the samples included in SetEvaluation. Additionally, we measure the classifi-
ers' training and classification speed in order to assess their real-time capability. For 
every evaluation we present, we perform five repetitions of a five-fold cross validation 
stratified over the included classes within the respective set. Thus, in every fold, the 
samples of each class are split into 80% training and 20% testing samples. For the 
deep learning classifiers, we additionally split 5% from the training samples for a hold-
out set which is used to assess the performance of the classifiers during training. We 
train all deep learning models as long as they are improving on the holdout set. After 
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 five epochs without improvement we stop the training and evaluate the best model on 
the test samples. In order to evaluate and compare the different classifiers we primarily 
use the f1-score which is defined as the harmonic mean of the precision and the recall. 
The precision measures the fraction of true positives among those samples that are 
labelled as positive by a classifier. The recall, on the other hand, equals the true posi-
tive rate and thus measures the proportion of positives that are correctly identified by 
a classifier. We calculate these metrics for every class included in our evaluation and 
afterwards average all class scores to assess the overall performance of a classifier. 
By using this macro-averaging, we value each class with the same level of importance 
despite the actual number of available samples per class varying. 

3.1.8.3 EXPLAIN 

The engineering of features requires much more effort compared to the usage of deep 
learning classifiers where all important information has simply to be encoded and pro-
vided to the model, then the model learns the relevant features on its own in an end-
to-end fashion. Moreover, after the feature engineering the best combination of fea-
tures has to be selected. The combination of several engineered features might contain 
mutual information which could render single features useless for the classification. 
These features should be removed as their extraction from the raw data might require 
significant processing time which could have a negative impact on the real-time capa-
bility of a classifier. For performing the complex process of feature selection, a multi-
tude of feature filtering and ranking techniques (e.g. [25, 26, 27, 28, 29, 30]) have been 
suggested in the past. Lastly, in the development process of a feature-based classifier 
a huge amount of hyperparameters has to be optimised. All in all, for a promising fea-
ture-based classifier these three steps (i.e. feature engineering, feature selection, and 
hyperparameter optimisation) have to be performed which is not a trivial task. During 
the development of EXPLAIN we investigated RFs and SVMs. In our experiments, our 
RF variants outperformed our SVM approaches in training time as well as in classifi-
cation performance. We thus focus on the development of an RF-based implementa-
tion of a feature-based multiclass DGA classifier in the following. 

Feature Engineering & Selection 

We study 136 different features which we gathered or adapted from related work 
(mainly from [2, 7, 10, 21]) and developed by our own through analysing the samples 
of the different DGAs and benign samples contained in SetSelection. As we target a con-
textless classifier due to privacy considerations we only focus on features that can be 
extracted from a single domain name. We divide the 136 features into 64 linguistic, 17 
structural, and 55 statistical features. Note, we only use samples from SetSelection for 
feature engineering and selection. The final comparative evaluation will be performed 
on samples from the disjunctive set SetEvaluation. We provide a list of the developed fea-
tures including their total amount and a brief description of their purpose in Table 4. 
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Table 4: Newly developed features. 

For instance, simple features attempt to distinguish DGA families based on the suffixes 
used in their generated domains because different families use different sets of suf-
fixes. Other features try to separate DGA families based on character distributions as, 
for example, wordlist-based families do have different consonant and vowel distribution 
in contrast to arithmetic- and hex-based families. Additionally, we introduce novel fea-
tures to discriminate different underlying pseudo-random number generators used by 
the DGA families for domain generation. A detailed description for each individual fea-
ture can be found in the source code.  

After feature engineering we perform feature selection to reduce the computational 
complexity for training and classification of our classifier and to enhance its overall 
classification performance. A variety of different feature selection methods have been 
proposed in the past, all having their advantages and disadvantages. In this work, we 
thus make use of different filter and wrapper methods to determine valuable features 
as there is no best technique.  

Filtering methods leverage proxy measures to assess the importance of features. The 
main advantages of filter methods are that they are computationally lightweight, scal-
able, and independent of the underlying learning algorithm. Common measures are 
the variance, mutual information, chi-square test, ANOVA F-test, and Relief-based al-
gorithms [27]. The variance as well as the mutual information of a variable with a target 
label can be used as a proxy to measure the amount of information of a feature. Fea-
tures that contain little information can be filtered out because they contribute only 
insignificantly to the classification. The chi-square test measures the dependence be-
tween a non-negative categorical feature and the target label which can thus be used 
to remove features that are independent of a class and therefore irrelevant for the 
classification. In case of numerical features, the ANOVA F-test should be used instead. 
As we intent to utilise a mix of different categorical and numerical features we do not 
make use of these filtering techniques. Relief-based algorithms [27] compute an im-
portance score for every feature based on differences in feature values of nearest 
neighbour instance pairs. The advantages of Relief-based algorithms is that they run 
in low-order polynomial time, are not sensitive to feature interactions, and are robust 
against noise. However, their weaknesses are that they do not discriminate redundant 



 

Page 33 of 61 

 SAPPAN – Sharing and Automation for Privacy Preserving Attack Neutralization  

WP5 

D5.2 – Global Model Based on Shared Anonymized Data, Final Version 

 Sebastian Schäfer, 29.10.2021 

 features and that they might be fooled by low numbers of training instances. ReliefF 
[28] is the most commonly used Relief-based algorithm [30]. Another efficient Relief-
based algorithm is MultiSURF [30]. It can be used for the sake of simplicity or when 
computing resources are limited, since there are no execution parameters to be opti-
mised. For our feature selection, we utilise ReliefF and MultiSURF to select the better 
than average features according to their computed feature importance.  

Wrapper methods are, in contrast to filter methods, more computationally intensive as 
they are not independent of the underlying learning algorithm. For each feature subset 
a new model is trained and evaluated which allows for finding the best performing fea-
ture set for a particular model and evaluation set. A commonly used wrapper method 
is recursive feature elimination (RFE) [26]. RFE recursively estimates the feature im-
portance based on a feature ranking method and recursively removes the least im-
portant feature, starting with the complete feature set. In each iteration of RFE the 
classification performance of the current feature set is estimated using a hold-out set. 
Thus, by using RFE it is possible to determine the best feature set for a given model 
and evaluation set. In this work, we use the cross-validated variant of RFE included in 
scikit-learn using the Mean Decrease Impurity (MDI) [29] and the Permutation Im-
portance (PI) [25] as feature ranking methods. For every feature, MDI measures the 
average gain of purity by splits using the corresponding feature within the trees in the 
forest. The advantage of MDI is that once the model is trained the MDI for each feature 
can be calculated without the need of further model executions (e.g., evaluating a hold-
out set). However, this property is at the same time a weakness of MDI as the feature 
importance are only derived from statistics of the training data set and thus this meas-
ure does not indicate which features are the most important for good predictions on a 
hold-out set. Further, MDI might overestimate the importance of high cardinality fea-
tures. PI, on the other hand, does not suffer from these issues. After a model is trained, 
the PI can be measured for every feature by calculating the increase of the model's 
prediction error after permuting the feature values included in a validation set. If the 
model error increases (compared to the model error measured on the validation set 
containing the unshuffled feature values), the feature is important as the model uses it 
for correct predictions. The feature is not important if the model error stays unchanged 
as the model does not rely on the corresponding feature for classification. To select 
valuable features, we make use of RFE with MDI as well as RFE with PI.  

Results 

For our feature selection, we first exclude ill-defined features with zero variance or zero 
mutual information with the target label since they do not contain any information that 
a classifier could use to distinguish samples. Thereby we remove three of the 136 
investigated features. Thereafter, we derive four different feature sets using an RF 
classifier with default hyperparameters (set by scikit-learn) and the previously intro-
duced feature selection methods: ReliefF, MultiSURF, RFE-MDI, and RFE-PI. As there 
is no best feature selection method, we additionally combine all sets into an Intersec-
tion set (by calculating the intersection of all sets) and a Union set (by taking the union 
of all sets). Additionally, we remove multicollinear features within the Union set. Re-
moving such features could improve the classifier's training and classification time with-
out decreasing its classification performance since the classifier can obtain the same 
information from correlating features. The removal of such features thus reduces the 
computational burden of a classifier. In order to achieve this, we perform hierarchical 
clustering on the features' Spearman rank-order correlation coefficients [31], where the 
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 coefficients measure the monotonicity of the relationships between different features. 
We provide a heatmap of correlating features contained in the Union set in Fig. 7. 

 

Fig. 7: Heatmap and dendrogram of the correlating features of the Union feature set. 

The darker a cell within the figure, the more the features, which are depicted on the x- 
and y-axis, correlate positively. It can be seen, that while the features in the left upper 
part of the heatmap are less correlated to each other, features within the right lower 
part build several clusters. In order to remove the correlating features, we calculate a 
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 cut-off threshold targeting the preferred number of remaining clusters. For better un-
derstanding, we provide the corresponding dendrogram in Fig. 7 on top of the heatmap 
including the plot of the cut-off threshold. The y-axis is a measure of closeness of the 
different clusters. In our case the calculated threshold equals approximately 0.39. The 
features which are clustered under the threshold line are collapsed by choosing the 
feature with the highest MDI. Through this process we generate the additional feature 
set Union-Spearman. 

The upper part of Table 5 displays the number of selected features per individual se-
lection method as well as evaluation results obtained by classifying the samples of 
SetSelection. In the lower part, we additionally include results of the different feature set 
combinations as well as an evaluation using all 136 features for comparison.  

Feature 
Set 

# 
F1-
score 

Precision Recall 

Training 
Time/Classi-
fier [s] 

 

Feature Extrac-
tion Time/Sam-
ple [𝝁s] 

Inference 
Time/Sample 
[𝝁s] 

RFE-
MDI 52 0.74290 0.78390 0.73592 195 156 17 

RFE-PI 28 0.75504 0.78528 0.74934 100 106 16 

ReliefF 41 0.71707 0.74192 0.71267 184 198 18 

Multi-
SURF 

59 0.72946 0.77833 0.72353 192 241 17 

All fea-
tures 136 0.72806 0.77131 0.72114 320 695 17 

Intersec-
tion 

11 0.64527 0.67936 0.64778 27 85 16 

Union 76 0.73352 0.77842 0.72662 264 276 17 

Union-
Spear-
man 

64 0.74654 0.79204 0.73836 225 239 17 

Table 5: Feature Selection Analysis 

The best evaluation results on SetSelection are achieved with RFE- PI (f1-score of 
75.504%). This is remarkable since only 28 of the 136 features are used. The only 
feature set which contains less features is the Intersection set with eleven features in 
total. However, the f1-score for this set is with 64.527% the worst. The training and 
feature extraction speed is the best for RFE-PI when the Intersection set is ignored. All 
feature selections, except for ReliefF and Intersection, improve the classification per-
formance compared to the classifier that uses all features. The removal of twelve mul-
ticollinear features contained in the Union set (yielding Union-Spearman) increases the 
f1-score by more than 1%. The required inference time per sample does not vary much 
between all feature sets. Since it cannot be ruled out that some feature sets might 
perform well on the utilised data set due to overfitting, we consider for our further de-
velopment the best individual feature set (RFE-PI) as well as the Union and Union-
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 Spearman feature set combinations. We thus perform individual hyperparameter opti-
misations for all of these three feature selections. 

 

Table 6: All selected features: d0 = iee-security.org, d1 = mwkwhvkdpp.info 

Selected Features 

Here, we only present the features we have selected. The full list of investigated fea-
tures as well as a description for each individual feature can be found in the publicly 
available source code [24]. All selected features can be separated into three different 

http://iee-security.org/
http://mwkwhvkdpp.info/
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 groups: linguistic, structural, and statistical features. The first category of features anal-
yses the presence or absence of common linguistic patterns. For instance, features of 
this category evaluate whether a domain name contains digits or compute the vowel 
ratio. Structural features, on the other hand, investigate structural properties of a do-
main name such as the domain length. The last category contains features which cap-
ture statistical properties such as the frequency distribution of certain n-grams or the 
entropy. In Table 6, we provide an overview of all features selected by the different 
selection methods.  

For every feature, we mark the membership to a corresponding feature set and present 
extracted feature values for two sample domains, d0 and d1. We define a feature as a 
function F of a sample d. Thus F(d) denotes the extracted feature. In our example, d0 
= iee-security.org represents a benign NXD caused by a typing error of ieee-secu-
rity.org while d1 = mwkwhvkdpp.info is a malicious NXD generated by the Conficker 
DGA. Note, 60 out of the 76 features from the Union set are newly developed indicating 
the need of new features for the DGA multiclass classification task. 

Hyperparameter Optimisation 

The exhaustive grid search is one of the most used hyperparameter optimisation strat-
egies [32]. It generates candidates from a grid of parameter values and evaluates each 
in order to determine the optimal hyperparameters. As every possible hyperparameter 
combination for the defined values is evaluated, this brute-force approach is computa-
tionally expensive. Random search [32] can be used in order to reduce computational 
costs by performing a certain number of randomly chosen trials over the hyperparam-
eter space. Obviously, the parameter values that are to be investigated in a grid search 
can be reduced in order to decrease the computational costs. However, by a coarser 
grid search it is more probable to miss well performing hyperparameter combinations 
which might be found by a random search. The number of trials plays a crucial role in 
finding well performing hyperparameters in a random search. Practically, often 60 trials 
are used because the maximum of 60 random observations lies within the top 5% of 
the true maximum with a probability of 95%. However, this only holds true if the close-
to-optimal region of the hyperparameters occupies at least 5% of the whole grid sur-
face. Another optimisation strategy to tackle the computational costs is the Bayesian 
search [33]. The Bayesian search is a sequential process which takes information of 
the previously evaluated hyperparameter combinations into account in order to choose 
the next set of hyperparameters for evaluation. The downside of the Bayesian search 
is that it is not parallelisable since the next search always depends on the results of 
the previous searches. In this work, we thus choose to utilise random search for hy-
perparameter optimisation. Thereby, we do not require as many computational re-
sources as for an exhaustive grid search but are able to parallelise the optimisation. 
As we do not know how much space the close-to-optimal region of the hyperparame-
ters occupies in our case, we double the recommended number of random trials to 120 
in order to find well performing hyperparameters. As stated previously, we consider the 
following feature sets for our hyperparameter optimisation: RFE-PI, Union, and Union-
Spearman. For each feature set, we run two hyperparameter optimisations, one using 
the random forest implementation which is inherently capable of multiclass classifica-
tion (RF) and one using a one-vs.-rest variant (OvR). We discard all one-vs.one (OvO) 
variants due to their slow classification speed although their classification performance 
might be slightly better. In detail, we optimise the following hyperparameters of the 

http://iee-security.org/
http://ieee-security.org/
http://ieee-security.org/
http://mwkwhvkdpp.info/
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 random forest implementation of scikit-learn: n_estimators, criterion, max_depth, 
max_features, bootstrap, and class_weight. 

Results: For all three investigated feature sets (RFE-PI, Union, Union-Spearman) we 
obtain best results on SetSelection using the OvR implementation. We refer to the 
three different combinations of chosen hyperparameters and feature sets as EX-
PLAIN-OvRRFE-PI, EXPLAIN-OvRUnion, and EXPLAIN-OvRUnion-Spearman in the follow-
ing. We note, that the OvR variants require more training and classification time than 
the RF variants. Thus, we additionally include the fastest RF implementation to the 
classifier configurations for comparison. The fastest model makes use of the RFE-PI 
feature set. We refer to this model as EXPLAIN-RFRFE-PI in the following. For repro-
ducibility we provide the specific values for each hyperparameter and for every model 
in the source code [24]. 

3.1.8.4 Evaluation 

We first present the results of our comparative evaluation. Thereafter, we examine the 
training and classification speed of the various classifiers in order to assess their real-
time capability. 

Classification Performance 

For our comparative evaluation, we compare the selected state-of-the-art classifiers 
with our developed EXPLAIN classifier configurations using samples of SetEvaluation. We 
summarise the results of this evaluation in Table 7.  

Classifier F1-score Precision Recall 

M-FANCI-RF 0.56808 0.58680 0.57805 

M-FANCI-RF-OvO 0.57097 0.59210 0.58092 

M-FANCI-RF-OvR 0.56907 0.58873 0.57852 

M-FANCI-SVM-OvO 0.50320 0.55289 0.51028 

M-FANCI-SVM-OvR 0.35113 0.38483 0.37827 

M-Endgame 0.74641 0.76731 0.74327 

M-Endgame.MI 0.75287 0.77100 0.75351 

M-NYU 0.75447 0.79080 0.74648 

M-NYU.MI 0.78069 0.80698 0.78038 

M-ResNet 0.79574 0.81915 0.79224 

M-ResNet.MI 0.80361 0.81435 0.81036 

EXPLAIN-RFRFE-PI 0.76114 0.77862 0.75982 
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 EXPLAIN-OvRRFE-PI 0.76883 0.79245 0.76624 

EXPLAIN-OvRUnion 0.78554 0.81631 0.77955 

EXPLAIN-OvRUnion-Spearman 0.78046 0.81541 0.77540 

Table 7: Multiclass classification results. 

The ResNet-based approaches (developed in SAPPAN and reported in D3.4) achieve 
the best results.  

 

Fig. 8: Combined confusion matrix of EXPLAIN-OvRUnion and M-ResNet.MI. 

Among our classifiers, our EXPLAIN-OvRUnion configuration performs the best and ac-
complishes an f1-score of 78.554%. By this means, it is the next best classifier after 
the ResNet-based approaches. The M-NYU.MI model achieves comparable results. 
An f1-score of 78.554% might appear rather low but devices infected with DGA-based 
malware will typically generate multiple AGDs per day. Thus, real-world counteractions 
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 would not have to be triggered based on a single classification but rather on the fact 
that multiple AGDs were attributed to the same DGA. All deep learning models benefit 
from class weighting. The NYU model profits the most and improves its f1-score by 
over 2.6%. The adapted feature-based approaches of related work perform poorly. Our 
best EXPLAIN configuration is by over 21.45% in f1-score better than the best FANCI-
based approach. EXPLAIN-OvRUnion-Spearman is slightly worse than EXPLAIN-OvRUnion. 
EXPLAIN-OvRRFE-PI and EXPLAIN-RFRFE-PI achieve with an f1-score of approximately 
76% slightly worse results than the EXPLAIN configurations that are based on the Un-
ion feature set. However, both of these classifiers are better than all state-of-the-art 
classifiers except for M-NYU.MI and the ResNet-based approaches. To better visualise 
the classification performance and to compare our best classifier configuration (EX-
PLAIN-OvRUnion) with the best classifier (M-ResNet.MI), we present a combined con-
fusion matrix in Fig. 8.  

The combined confusion matrix shows for both classifiers the relative number of sam-
ples belonging to classes displayed on the vertical axis that are labelled as classes 
shown on the horizontal axis. For every combination of true and predicted label, space 
in form of a square is reserved within the figure. Each square is halved into two trian-
gles where the upper left triangle is dedicated to the samples classified by EXPLAIN-
OvRUnion and the lower right triangle visualises the classification performance of M-
ResNet.MI. The individual achieved scores for both classifiers and every class are en-
coded within the respective triangles as shades of either blue (EXPLAIN-OvRUnion) or 
red (M-ResNet.MI). An f1-score of 0% is encoded as a transparent triangle and 100% 
is represented by a fully opaque triangle. A perfect classifier would produce only 
opaque triangles on the identity matrix diagonal. The benign class is located at the 
upper left part of the figure. Thereafter are the DGA families listed in alphabetical order. 
Surprisingly, both classifiers discriminate most DGA families as well as the benign 
class equally well. Moreover, several DGA families which are almost not recognized 
by EXPLAIN are also not recognized by M-ResNet.MI (e.g., Dircrypt, Goznym, Hes-
perbot, Tempedreve). These results indicate that the ResNet-based approach might 
learn similar features. However, three DGA families (Redyms, Tempedrevetdd, and 
Xshellghost) are only detected by M-ResNet.MI. It might be possible to engineer new 
discriminating features by investigating the samples of these three classes in order to 
enable the correct detection by our classifier. Lastly, both classifiers tend to attribute 
samples of related DGA families to a single class (e.g., Pykspa-Pykspa2 and Vidro-
Vidrotid). All in all, these results show that our EXPLAIN classifiers are able to achieve 
competitive results while being at the same time, due to the feature-based approach, 
far more explainable. 

Training & Classification Speed 

In the following, we compare the training and classification times of the classifiers pro-
posed in related work with our proposed classifiers. Note, we acknowledge that the 
reported times are difficult to compare as the deep learning classifiers are able to take 
advantage of GPU processing while the feature-based approaches are evaluated on 
CPUs. However, the main goal of this study is to determine whether it is realistic to 
utilise the classifiers for real-time classification. Although, the hardware components 
may be scaled, the relative time difference in training and classification time allow for 
a comparison within the group of deep learning classifiers and within the group of fea-
ture-based approaches. In Table 8, we display the training time per classifiers and the 
classification time per samples for all investigated classifiers. 
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Classifier Training 

Time/Classifier [s] 
Classification 
Time/Sample [𝝁s] 

M-FANCI-RF 28 198 

M-FANCI-RF-OvO 2528 31711 

M-FANCI-RF-OvR 1423 435 

M-FANCI-SVM-OvO 114 285851 

M-FANCI-SVM-OvR 13042 47239 

M-Endgame 1862 151 

M-Endgame.MI 1846 149 

M-NYU 596 55 

M-NYU.MI 577 55 

M-ResNet 1106 133 

M-ResNet.MI 1028 134 

EXPLAIN-RFRFE-PI 307 128 

EXPLAIN-OvRRFE-PI 2533 231 

EXPLAIN-OvRUnion 7036 534 

EXPLAIN-OvRUnion-Spearman 3036 358 

Table 8: Performance Analysis 

All times are measured during the comparative evaluation. The classification time per 
sample includes for feature-based approaches the feature extraction time and for deep 
learning-based approaches the required time for the input pre-processing (i.e. convert-
ing domain names to a sequence of integers). We ignore the training and classification 
times for the FANCI-based approaches as they performed poorly. However, for the 
sake of completeness we list their times within the table. Regarding the group of deep 
learning-based approaches, the NYU models are fastest in training and predicting fol-
lowed by the ResNet-based approaches. The Endgame models are the slowest. Within 
the group of our proposed classifiers, EXPLAIN-RFRFE-PI is by far the fastest to train 
and classifies samples similarly fast as the M.ResNet.MI model although it is executed 
on CPUs. EXPLAIN-OvRRFE-PI is the second fastest EXPLAIN model followed by EX-
PLAIN-OvRUnion-Spearman. The twelve additional features included in the Union feature 
set, compared to Union-Spearman, significantly increase the training as well as the 
prediction time. In order to approximate the required performance of a classifier for 
real-time classification, we measure the average amount of occurring NXDs within the 
university network which was used as source of benign data during our previous ex-
periment. On average, we observed 174 NXD responses per second with a maximum 
peak of 2325 NXD responses per second. Thus, a classifier has at most 430𝜇𝑠 in order 
to classify a single sample. All classifiers under consideration except for EXPLAIN-
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 OvRUnion are thus able to perform real-time classification. EXPLAIN-OvRUnion requires 
534𝜇𝑠 and thus classifies 1872 samples per second. However, during the whole one-
month recording, the maximum packets per second exceeded only for four consecutive 
seconds the mark of 1872. Thus, for the live classification of a large university network, 
EXPLAIN- OvRUnion would only delay a few packets for a few seconds within a whole 
month. We thus argue that EXPLAIN-OvRUnion is also well-suited for live classifica-
tion. Moreover, our proposed EXPLAIN classifiers are highly parallelisable and scale 
extremely well with the number of CPU cores. 

3.1.8.5 Conclusion and Discussion 

In conclusion, we proposed EXPLAIN, a feature-based and context-less DGA mul-
ticlass classifier and compared different EXPLAIN configurations with several state-of-
the-art classifiers in a unified setting on the same real-world data. Our best performing 
model, EXPLAIN-OvRUnion uses 76 features and achieves the best f1-score after the 
ResNet-based approaches. EXPLAIN-OvRRFE-PI and EXPLAIN-RFRFE-PI make use of 
only 28 features and beat all feature-based approaches proposed in related work by a 
huge margin. Moreover, they achieve higher f1-scores than the deep learning-based 
approaches: M-Endgame, M- Endgame.MI, and M-NYU. Surprisingly, the in-detail 
comparison between EXPLAIN-OvRUnion and M-ResNet.MI indicates that the deep 
learning classifier might learn very similar features as the ones we have selected for 
our EXPLAIN classifiers. Finally, we analysed the real-time capability of the different 
classifiers. All of our proposed classifiers are highly capable of real-time classification. 
Our fastest proposed model, EXPLAIN-RFRFE-PI, is even able to classify 7812 samples 
per second. Which EXPLAIN configuration to choose depends on the individual re-
quirements of the classifier. EXPLAIN-OvRUnion achieves the best classification results 
using 76 features. Selecting a configuration that uses the RFE-PI feature set with only 
28 features could make it easier to interpret predictions from a model. EXPLAIN-Ov-
RUnion-Spearman offers a compromise as it uses 64 features but achieves comparable 
classification results as EXPLAIN-OvRUnion. The EXPLAIN-RFRFE-PI configuration 
should be chosen over EXPLAIN-OvRRFE-PI when the computational resources are lim-
ited. Otherwise, for a fast, explainable, and slightly better classifier EXPLAIN-OvRRFE-

PI should be chosen. By design our feature-based approach is more explainable com-
pared to the deep learning classifiers proposed in related work as predictions can be 
traced back to the characteristics of the used of features. In contrast, deep learning 
classifiers only output a vector of probabilities indicating to which class a particular 
domain can be attributed to without referring to the actual input.  

By proposing a competitive feature-based approach we made a first step towards ex-
plainable DGA multiclass classification. Ultimately, a focused comparison of different 
approaches to DGA multiclass classification with respect to explainability is required. 
Our work is a necessary prerequisite for a comparative explainability study in which 
competitively performing feature-based and deep learning-based approaches have to 
be contrasted. In future work it is required to compare the level of explainability pro-
vided by our approach with different techniques, such as Lemna [34] and DMM-MEN 
[35], which try to explain the predictions of deep neural network classifiers. Moreover, 
in SAPPAN, we proposed a visual analytics system (reported in D3.8) which strives to 
provide understandable interpretations for predictions of deep learning based DGA de-
tection classifiers. This system first clusters the activations of a model's neurons and 
subsequently leverages decision trees in order to explain the constructed clusters.  
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 Additionally, future work could analyse the interpretations of deep learning-based mod-
els for correctly classified samples which, however, are incorrectly classified by our 
approach. It might be possible to extract used features of deep learning models which 
enable the correct classification of such samples for our classifier. Thereby, it might be 
possible to further enhance the performance of our approach. 

With proposing EXPLAIN we did the first step towards using its feature extractor for 
sharing anonymised domain names in a collaborative machine learning scenario for 
DGA multiclass classification. While the privacy analysis of FANCI's feature extractor 
for sharing anonymised data for DGA binary classification yielded promising results, 
the results cannot be easily transferred to EXPLAIN for DGA multiclass classification, 
as EXPLAIN uses different feature sets. Thus, a similar privacy evaluation of the dif-
ferent feature sets has to be conducted in future work. 

 Application profiling 

In this Section, we discuss the impact of shared datasets on the accuracy of our appli-
cation profiles. We test, whether application profiles that were generated on one host 
can be transferred to the application behaviour of another host. Additionally, we dis-
cuss, whether application profiles that were created using data of multiple hosts better 
represent the application's behaviour in general. 

3.2.1 Sharing of DNS data 

3.2.1.1 Rule-based approach 

In Deliverable D3.5, we described our rule-based pipeline for application profiling on 
DNS data. First, we described the data generation process using our developed tool 
ATLAS. Based on the generated data, we automatically extract rules which represent 
the typical behaviour of applications when it comes to DNS traffic. In D3.5, we already 
presented an evaluation of our approach. We generated a dataset using nine virtual 
machines, where we installed multiple applications and interacted with them manually. 
We managed to achieve zero false positives and false negatives on the validation da-
taset. Only when including applications in the validation dataset that were only active 
for 60 seconds, we observed a few false negative results. 

For the full evaluation of this approach, we refer to Deliverable D3.5. However, to 
demonstrate the benefit of using data from multiple hosts, we now briefly compare the 
results of generating rules from only one host with the before mentioned results. We 
use the same parameters for rule-extraction that we derived as described in D3.5. 

We used data from one host for rule extraction. As described in Deliverable D3.5, the 
Rule-Extractor mostly uses three criteria to pick domain candidates, for required as 
well as optional labels, that are used in SET-rules. First, whether a domain is queried 
by different applications or is likely to be queried by user. Second, the fraction of appli-
cation instances that queried the domain. And third, the median interval between que-
ries of the specific domain for the application. The second criterion requires that multi-
ple instances of the application is present in the dataset. Hence, our dataset contains 
five individual datasets created using ATLAS, which were captured on different days. 
Additionally, the applications were restarted multiple times during each day. By doing 
this, we are still able to make use of the second criterion, even though the dataset 



 

Page 44 of 61 

 SAPPAN – Sharing and Automation for Privacy Preserving Attack Neutralization  

WP5 

D5.2 – Global Model Based on Shared Anonymized Data, Final Version 

 Sebastian Schäfer, 29.10.2021 

 contains only application traffic captured on a single host. For more details on the rule 
extraction, see Deliverable D3.5. 

Table 9 shows the number of identified candidates for required and optional labels that 
are considered in SET rules. As a reminder, required candidates might also be used 
as optional labels, if the number of required candidates exceeds the maximum number 
of required labels. We want to highlight two observations from this data. First, the total 
numbers of required and optional candidates increased by 75% when the data of all 
hosts are considered. This is the case because first, a larger variety of application 
instances is present in the data, and second, because the data contains overall more 
raw capture time. The greater number of candidates allows to use more labels, either 
required or optional, in each SET rule, making them more robust to reduce false posi-
tives. The second observation is that the number of required candidates decreased by 
around 40%, while the number of optional candidates increased by a factor of seven. 
This is the case because overall more application instances are in the dataset, and 
therefore, the second mentioned criterion can be calculated more accurately. While 
some domains are typically queried by one host, they might not be queried by all other 
hosts. Hence, some of the domains classified as required candidates in the smaller 
dataset are either classified as optional candidates or completely discarded in the 
larger, shared dataset. This makes the generated SET-rules more robust and repre-
sentative for the applications, independently of individual hosts. 

Next, we compare the number of false positives and false negatives of the two created 
rule sets. For this, we make use of the same validation dataset described in D3.5, 
containing traffic of all applications spread among four different hosts. Table 10 shows 
the analysis results of our validation dataset. With the generated rules, we end up with 
a large number of false positives and false negatives. When using the multi-host da-
taset for rule generation, we had zero false positives and only false negatives when 
including applications that only ran for 60 seconds. With the single-host ruleset, we 
have considerably more false positives and false negatives even without the short run-
ning applications. Note, that the one host that produced the data for our rule generation 
was also used as a host in the validation set. On this host, the ruleset produced only 
one false positive (MS Edge) and one false negative (Firefox). However, on the other 
hosts, almost no applications where detected correctly. 

Application 
Rule candidates from one 
host (required/optional) 

Rule candidates from nine 
hosts (required/optional) 

Firefox 14/5 12/18 

Chrome 9/0 0/4 

Windows 10 2/0 1/5 

Sophos 0/0 0/1 

Skype 8/0 4/10 

Onedrive 6/0 2/6 

Dropbox 6/1 2/5 
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 Steam 4/0 2/4 

Zoom 1/0 6/3 

MS Office 2/3 0/11 

Teamviewer 3/2 3/6 

MS Edge 0/0 0/11 

Easyminer 1/1 1/2 

Total 56/12 33/86 

Table 9: Domains considered as suitable candidates for CF- and SET-rules, based on data from 
one host vs. nine hosts. 

Ruleset 
False Positives (with/with-
out short runtimes) 

False Negatives (with/with-
out short runtimes) 

single-host 6/11 6/22 

multi-host 0/0 0/5 

Table 10: False positives and false negatives (with and without including application runtimes of 
60 seconds) of the single-host and multi-host rulesets. 

This shows that the amount of data used for rule extraction is crucial for the construc-
tion of a well performing rule set. We assume that the total amount of traffic in the 
single-host dataset was simply not enough. We included five days of traffic, however, 
the multi-host dataset contains more than five times the number of DNS packets. Fur-
ther, the addition of different hosts allowed the rule-extractor to identify better domain 
candidates that are more representative of the applications. 

3.2.1.2 Process mining-based approach 

In Deliverable D3.5, we described our process mining approach for application profiling 
based on DNS data. The general idea is to create process mining models that repre-
sent the typical behaviour of applications when it comes to DNS traffic, in order to 
identify such applications when monitoring a network. Note that the approach was 
meant as a proof of concept to find out whether process mining is applicable to our 
use-case. We showed that our models can represent the behaviour of applications well 
in most cases, especially when using token replay to measure the fitness. However, 
we encountered problems with browsers in some cases, which was expected due to 
the dependency on user input for browsers considering DNS traffic.  

In D3.5, we only looked at models created from data of one host tested with data from 
the same host. In general, the approach already showed promising results when only 
considering one data source. Here, we want to test whether models created on one 
host work on data from a different host. Additionally, we test whether the fitness im-
proves if we take data from multiple hosts into account for model creation. As data 
source, we use data of four different hosts where the same applications are installed. 
Note that all of the hosts are virtual machines and we interacted with the applications 
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 manually. Hence, this experiment only serves as an indication whether the models are 
transferable to different hosts in a real environment. 

Application 
Average trace fitness 
(token replay) 

Log fitness (token replay) Fitness (footprints) 

Firefox 0.999 0.999 0.993 

MS Edge 0.857 0.857 0.714 

Steam 0.992 0.987 0.926 

Nicehash 1.0 1.0 1.0 

Windows 10 0.989 0.989 0.596 

Chrome 0.700 0.963 0.910 

Dropbox 0.998 0.998 0.978 

Sophos 1.0 1.0 1.0 

MS Office 1.0 1.0 1.0 

Table 11: Fitness of application models when tested against test data of a different host, to test 
transferability of the models. 

Application 
Average trace fitness 
(token replay) 

Log fitness (token replay) Fitness (footprints) 

Firefox 1.0 1.0 1.0 

MS Edge 0.997 0.997 0.913 

Steam 0.993 0.993 0.941 

Nicehash 0.931 0.931 0.712 

Windows 10 0.971 0.971 0.648 

Chrome 0.997 0.997 0.964 

Dropbox 1.0 1.0 1.0 

Sophos 0.786 0.786 0.667 

MS Office 1.0 1.0 1.0 

Table 12: Fitness of application models generated using data from multiple hosts, to test the 
impact on model fitness. 

Table 11 shows the results when testing the model generated on data from one host 
on data from another host. For many applications, the fitness values are high, with the 
only exceptions of Chrome and Edge. As described in D3.5, it is harder to create pro-
files for browsers that are not too general (and always yield a fitness of 1.0), or too 
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 imprecise. In Table 12, we can see the fitness values for the experiment, where the 
models were generated using data from three hosts, and tested with data from a forth 
host. In general, the fitness values are high for token replay. However, the fitness for 
Nicehash and Sophos are worse compared to the other experiments. 

In summary, we conclude that models created on data of one host can be transferred 
to other hosts in most cases. Especially for non-browser applications, the fitness stays 
quite high. However, we could not measure a reproduceable benefit of combining data 
from different hosts. One reason for that is most likely the similar nature of our virtual 
machines that we used for data generation. At time of writing this deliverable, we had 
no access to real-world datasets to repeat these experiments, which would be neces-
sary to further explore the benefits of sharing in this use-case. 

3.2.2 Sharing of System Event Data 

In the following, we briefly discuss the impact of merging multiple datasets for our ap-
plication profiles based on system events. In Deliverable D3.5, we described our pipe-
line for the creation of application profiles using process mining on system event data, 
captured by the F-Secure sensors. In an experiment, we created a model of the appli-
cations installed on a host based on 50 days of benign data. Afterwards, we used the 
Trace-Checker with data captured during our red-teaming experiment to see, whether 
the model outputs anomalies. 

Now we want to discuss how our models behave when data from different hosts is 
considered. First, we want to test, whether a model created on one host accurately 
represents benign behaviour of different host. Next, we create a model based on data 
from multiple hosts and use the Trace-checker again on the attack data (similarly to 
the experiment described in Deliverable D3.5) to test whether the results are consid-
erably different compared to using data from only a single host. 

We used similar datasets as described in Deliverable D3.5. This time, we consider 
attack and benign data from the red-teaming host, as well as an additional host that 
was set up similarly to the red teaming machine, but without any malicious activity. The 
datasets are listed in Table 13. 

Dataset Type Time (days) System Events 

RED-benign benign 51 8.035.194 

RED-attack malicious 1 17.089 

RED-train benign 50 7.845.569 

RED-test benign 1 189.625 

normal-test benign 31 61.623 

normal-train benign 249 186.525 

Table 13: Datasets used for the anomaly detection experiment, adapted from [45]. 
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 Table 14 shows the results of experiments with different hosts. The Trace-checker 
outputs are described in Deliverable D3.5 in more detail. It shows, that the RED-benign 
dataset is not fitting well to the models created by the normal host. Also, the RED-
attack dataset has only slightly more errors in comparison. However, when combining 
the data from the RED-train and normal-train datasets for model creation, the RED-
test dataset only produces a very low amount of errors. The RED-attack dataset, how-
ever, still shows 23.5% errors, indicating an anomaly. It is worth noting that the benign 
test of different hosts shows way more errors, even without malicious activity. This 
shows that models created on one host cannot simply be transferred to another hosts, 
even if both are similar. 

Trace-checker out-
put 

RED-benign vs. 
normal-train 

RED-attack vs. 
normal-train 

RED-test vs. RED-
train + normal-train 

RED-attack vs. 
RED-benign + 
normal-train 

true 51.22% 49.54% 97.03% 76.49% 

true, but insertions 1.96% 1.52% 0% 2.7% 

multiple fingerprints 
not part of the finger-
print matrix 

4.16% 0.91% 0% 3.51% 

successor is not cor-
related to the finger-
print 

23.5% 6.23% 0% 10% 

no startpoint found 17.51% 40.43% 2.97% 5.14% 

no endpoint found 0.69% 0.3% 0% 0% 

startpoint not valid 0.07% 0% 0% 0% 

endpoint not valid 0.1% 0% 0% 0.54% 

startpoint not in the 
fingerprint matrix 

0.14% 0.76% 0% 1.08% 

endpoint not in the fin-
gerprint-matrix 

0.48% 0.15% 0% 0.54% 

Table 14: Trace-checker errors for the test and attack datasets compared to the benign model 
computed from one or two datasets, adapted from [45]. 

Our focus for the process mining approach on system events was to use the created 
models on the same systems as they were generated on, as described in Deliverable 
D3.5. Because this first experiment regarding transferability of models between differ-
ent hosts did not show promising results, we did not continue its development, and 
rather focused on the other approaches presented in this deliverable. 

 Anomalous Login Activity model 

The Anomalous Login Activity model was introduced in Section 3.4.2 of SAPPAN D5.1. 
It is a supervised learning model that can be used to detect anomalous login events 
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 on organization’s endpoints. The model is trained on successful logins within an or-
ganization and predicts whether a given login is expected on a given endpoint. Unex-
pected logins are detected as anomalies and flagged for further analysis. In this sec-
tion, we briefly recollect the model, present the evaluation methods and results, and 
discuss the efforts of combining organization-specific models from multiple organiza-
tions for reducing false positives and for increasing the confidence of detected anom-
alies. The mentioned efforts connect the Anomalous Login Activity work to the research 
in Task 5.2 (though, unfortunately, our model combining experiments did not result in 
visible improvements). 

3.3.1 Motivation 

Detecting signs of anomalous login events is a time-consuming task when performed 
manually. To automate this task, a rule-based system that receives information about 
login events on an endpoint can be configured to catch suspicious activities of certain 
types, for example, multiple failed login attempts indicative of brute force attacks. Such 
attacks recently gained attention (see, e.g., [46] with the US and UK intelligence claim-
ing that Russian military hackers are running a cyber-campaign to steal emails and 
other information, including from parliaments, targeting primarily the United States and 
Europe. (The same hacker group is believed to steal and leak Democrat emails during 
the US 2016 presidential election and to target the Norwegian parliament in the sum-
mer of 2020.) The campaign has mainly been directed at organisations using Microsoft 
Office 365 cloud services, with the hackers using multiple attempts to log in with differ-
ent passwords to try to access systems, employing specialist software to scale their 
activities and using Virtual Private Networks and Tor, an anonymising system, to try to 
hide their traces. As reported by Microsoft, the targeted organisations typically saw 
more than 300 log-in attempts per hour for each targeted account, over the course of 
several hours or days. 

From the detection point of view, however, it is very difficult to manually write rules 
capable of, for instance, detecting a successful login from an intruder who has already 
gained access to credentials on one of the targeted endpoints. Such a ruleset would 
require a broad context, including data from a wide time window.  

A machine learning model trained to detect anomalous login events is well-suited to 
catch phenomena that would be difficult to spot manually. One example of this would 
be a user, that has never logged into a system using Remote Desktop Protocol (RDP), 
suddenly doing so. A machine learning model can also be able to identify anomalies 
from other variables present in its input data, such as source IP address and time of 
day, and can hence be well-suited to identify tactics employed by adversaries for lateral 
movement purposes. 

3.3.2 Approach 

The ground truth on confirmed intrusions is rare and costly to find or produce. So, we 
follow a different approach which does not rely on labeled data. We consider a rela-
tively large training period (e.g., 2 months) and we assume that malicious intrusions 
are very rare in this period, i.e., the absolute majority of logins are “clean”. 

Each training login is paired with its host / endpoint identifier, and a multi-class classi-
fication model is trained using the host identifier as a label, i.e., a model is trained to 
predict to which host in the organization a given login belongs. This training is carried 
out for each organization, generating multiple organization-specific models (which 
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 opens opportunities for combining those models in the style of SAPPAN Task 5.2, see 
Sections 3.4.2 and 3.4.3 below). 

In the testing phase, new logins are fed to the model. If the model correctly predicts 
the host identifier for a given testing login, this login is considered normal. Otherwise, 
i.e., if the predicted host identifier does not match the actual host identifier, the login is 
considered as anomalous. 

3.3.3 Data sources 

We use a software sensor which collects relevant information from each endpoint in a 
privacy-preserving fashion (F-Secure’s endpoint sensors were used in the research). 
This information is used by various detection models, rules and security analysts to 
detect anomalous or malicious behavior. The data for the Anomalous Login Activity 
model were a subset of that sensor data. In particular, it consists of events representing 
user logins on endpoints. 

Each login record includes the following features: 

• username 

• source IP 

• authentication protocol 

• timestamp 

This information is gathered from both Windows and Linux endpoints. 

3.3.4 Data preprocessing 

3.3.4.1 Removal of common logins 

To discriminate between endpoints, we remove common (popular) logins appearing 
on multiple endpoints within an organization. These usually represent system-level us-
ers or maintenance accounts, which may cause noise in the model output. 

3.3.4.2 Vectorization 

The login records are vectorized using a bag-of-words approach. First, a document is 
created from all the successful login events in a given endpoint. Each word in this 
document corresponds to one of the features. Then, a count vectorizer is used to con-
vert the document into a numerical vector. 

3.3.5 Implementation 

Most of the implementation uses pandas [47], scikit-learn [48] and PySpark [49] APIs. 
The large number of organizations and the large training periods considered make 
training of each model sequentially infeasible. Instead, we implemented a distributed 
approach by leveraging the PySpark partition mapping functionality. We partition the 
training set so that each partition contains the training data from a single organization. 
Then, we use PySpark API to train each organization’s model in parallel by taking ad-
vantage of each thread in the PySpark cluster. This greatly reduces the execution time 
required for the training, significantly reducing the analysis costs. 
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 3.3.6 Evaluation 

To validate our approach, we devised an ad-hoc evaluation scheme. Traditional clas-
sification metrics are, unfortunately, difficult to compute due to the absence of the 
ground truth on the intrusions and login events associated with those. Instead, we de-
fine a set of approximated quality metrics, based on the assumption that malicious 
login events are very rare. Note that since we have a different model instance for each 
organization, all the metrics are averaged over all the model instances. 

3.3.6.1 False Positive Rate 

Assuming the training set contains very few or no intrusions (so very few or no mali-
cious login events), we can estimate the false positive rate of the model as the number 
of anomalous logins the model generates on a portion of the training set, referred to in 
the text that follows as the validation set. 

3.3.6.2 Precision/recall on poisoned data 

To produce accuracy metrics, we can artificially generate a labelled data set by “poi-
soning” a testing set. By poisoning, we refer to replacing real login features with unu-
sual values. An accurate model should pick up on these changes, and it should flag 
the “poisoned” logins as anomalous. By considering poisoned logins classified as 
anomalous by the model as true positives, we can compute accuracy metrics, such as 
precision and recall. Note that this approach assumes that the testing set contains only 
a few non-poisoned malicious login events, or none at all. This assumption should 
reasonably hold in most real-world cases. 

3.3.6.3 Experimental setting 

We experimented with several multi-class classification models. All the implementa-
tions were taken out-of-the-box from the scikit-learn library. The evaluated models are: 

• naive bayes classifier with multinomial prior (multi-nb) 

• naive bayes classifier with Gaussian prior (gauss-nb) 

• decision tree classifier (decision-tree) 

• SVM classifier (svm) 

The random forest classifier was also considered but discarded due to its excessive 
memory usage. The training set is taken to be increasingly large from 5 days to 25 
days. The validation set is taken to be 2 hours (10:00-12:00) in the last day of the 
training period. The testing set is taken to be 2 hours (10:00-12:00), 5 days after the 
last day of the training period. 

 

Fig. 9: Timeline of experimental setting 
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 All the data were generated by the F-Secure’s production systems during the months 
of July and August 2021. 

3.3.6.4 Results 

False positive rate 

Fig. 10 shows the estimated false positive rate of the considered models. 

The Gaussian naive Bayes and SVM classifiers did not meet the memory requirements 
for the largest training set (25 days), so the results stop at the period of 20 days. 

 

Fig. 10: Estimated FPR on validation set 

Precision on poisoned data 

Fig. 11 shows the estimated precision on poisoned data of the considered models. The 
Gaussian naive Bayes and SVM classifiers did not meet the memory requirements for 
the largest training set (25 days), so the results for those stop at the period of 20 days. 

 

Fig. 11: Estimated precision on poisoned data 
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 Recall on poisoned data 

Fig. 12 shows the estimated recall on poisoned data of the considered models. The 
Gaussian naive Bayes and SVM classifiers did not meet the memory requirements for 
the largest training set (25 days), so the results for those stop at the period of 20 days. 

 

Fig. 12: Estimated recall on poisoned data 

Model comparison 

Fig. 13 shows a visual comparison of the models, with the Gaussian naive Bayes clas-
sifier and decision tree models showing the best accuracy. However, the naive Bayes 
classifier did not meet the memory requirements for the largest data set considered. 

 

Fig. 13: Algorithm comparison 

3.3.6.5 Performance across organizations 

The results presented above were aggregated over all the organizations. As men-
tioned, each organization is analyzed and ‘modelled’ independently to produce a clas-
sification model. The data produced by each organization can vary widely depending 
on several factors including: the number of active endpoints, the configuration of the 
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 installed sensors, the number of active users. Therefore, the models from different or-
ganizations might have different characteristics. To investigate this, we analyzed the 
accuracy on the validation set across the organizations. The following histogram sum-
marizes our results. These were produced using the decision tree classifier. 

 

Fig. 14: Accuracy distribution on validation set 

Fig. 14 shows that over 35 percent of the organizations produced extremely accurate 
models (with the accuracy above 95 percent). The rest of the sample is more evenly 
distributed, with the accuracy ranging from 0 to 90 percent. This analysis shows that 
for many organizations the data collected may not produce a reliable model. This also 
explains the low precision and recall scores obtained by averaging over all the models. 
To improve the quality of the results produced in production, and to avoid large num-
bers of false positives produced by inaccurate models, we decided to deploy in pro-
duction only the models with the validation accuracy above a given quality threshold. 
This choice reduces the model’s coverage, i.e., the percentage of customer organiza-
tions covered by the model, to around 35%. However, this drawback is offset by the 
low number of false positives the most accurate models produce. 

3.3.7 Combining models for improved accuracy 

As already mentioned, data from different organizations were analyzed independently 
to train multiple organization-specific classification models, opening opportunities for 
using those models jointly in the style of SAPPAN Task 5.2. In this section, we inves-
tigate how multiple Anomalous Login Activity models could be combined for increased 
accuracy.  

An anomalous login event is characterized by a user name, a login protocol and a 
source IP. IP addresses depend on the network configuration and are therefore organ-
ization-specific. On the other hand, the same user names and protocols can be present 
in multiple organizations. As an example, think of application processes that need to 
be run by a particular system-level user. We expect to find these processes across 
multiple organizations, especially if they relate to widely adopted software frameworks. 
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 We can use this information to reduce the false alarm rate, by considering anomalies 
reported by multiple models and filtering out those that are common across similar 
organizations. 

To talk about similar organizations, we need to define a similarity metric. We chose to 
compare organizations using their sensor distribution as features. These include: the 
total number of endpoints; the average number of login events per endpoint; the num-
ber of Linux and Windows sensors respectively. This set of features is privacy-preserv-
ing and it provides a similarity metric to compare organizations based on their size and 
endpoint types distribution. While naïve, this notion of similarity is in line with our anal-
ysis, since we expect similar-sized organizations to have a higher probability of having 
common software frameworks, as they can be expected to have similar technological 
problems to solve based on their size. 

With this similarity metric, we can compute nearest neighbour organizations for each 
given organization. We can then compare the login anomalies produced by one organ-
ization’s classification model with those produced by its nearest neighbours. Anomalies 
that appear identical across multiple similar organizations would plausibly represent 
false positives. We conducted an experimental evaluation to validate this idea. How-
ever, we could not find common anomalies across organizations in any of the con-
ducted experiments. A natural next step will be to experiment with other similarity met-
rics and larger sets of organizations.  

3.3.8 Clustering similar alarms 

We also investigated how anomalous login events cluster together. Each login event 
is characterized by a source IP, an authentication protocol, a username, and a target 
endpoint. Clustering together similar login events can provide additional information to 
the security analyst with respect to the severity of the alarms. 

 

Fig. 15: Clustering of anomalous logins 

To investigate this, we experimented with the DBSCAN algorithm on the anomalous 
login events generated by the models. We used the same data preprocessing tech-
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 niques on the login data to produce vector representations and then we applied den-
sity-based clustering on the resulting vectors. Fig. 15 shows a representation of the 
clustering obtained using t-SNE dimensionality reduction. 

The clustering results seem promising at first. However, a deeper analysis shows that 
anomalous login events tend to cluster around unreliable features, such as the source 
IP, which depend on the organizational network configuration, and thus cannot be used 
to cluster alarms across different organizations. The same is also true for user names 
and host identifiers. These are specific to each organization, and thus should not be 
used in looking for similarities across organizations. 

With respect to the authentication protocols, the majority of login events utilize the 
same authentication protocols. Thus, these do not add much information to the clus-
tering. In conclusion, although the idea of clustering similar alarms together for a 
deeper understanding seems viable in theory, our results show that it does not provide 
significant benefits in practice. We believe this is mainly due to the very limited feature 
set that we use to detect anomalous login events. Further experiments are required to 
explore other potential features. 
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4 Conclusion 

In this Deliverable, we presented the results of Task T5.1 "Distributed Learning of a 
global model based on shared anonymised data". We briefly discussed the context of 
this task within the overall scope of the SAPPAN project and explained its general 
concept. The developed approaches build on the use-cases DGA detection and appli-
cation profiling. In contrast to the tasks in WP3, where only local data is used, we 
focused on approaches based on shared data. 

For DGA detection, we initially defined three different scenarios for creating a global 
model based on shared anonymised data for DGA detection. An analysis of the three 
scenarios showed that sharing extracted features of a feature-based approach is the 
most promising scenario. Using this anonymisation technique has no impact on clas-
sification performance, but the privacy guarantees provided were still to be determined. 
Hence, we performed an extensive privacy evaluation of FANCI's feature extractor. 
There we showed that sets of feature vectors are resilient against a reconstruction 
attack and can therefore be used as a way of anonymisation in this sharing scenario. 
Since this analysis yielded promising results, we developed EXPLAIN, the first context-
less and feature-based DGA multiclass classifier. This classifier achieves competitive 
results, is real-time capable, and its predictions are easier to trace back to features 
than the predictions made by the DGA multiclass classifiers proposed in related work. 
We intend to use EXPLAIN's feature extractor in the same sharing scenario as ex-
plained for FANCI's feature extractor. Here, we solve the problem of DGA multiclass 
classification in contrast to the DGA binary detection task. However, as EXPLAIN uses 
different feature sets, a similar privacy evaluation of the different feature sets has to be 
conducted in future work. 

For Application profiling, we conducted experiments to determine whether application 
profiles that were generated based on one host can also model the behaviour of the 
same application running on a different host. Additionally, we explored whether appli-
cation profiles become more robust when using data from different hosts or application 
instances for model generation. For the process mining models based on DNS data, 
we found that a model that was created from data of one host also works well for other 
hosts. However, we could not measure a meaningful difference when using data from 
multiple hosts during model generation. For the process mining models based on sys-
tem events, the results were similar. For our rule-based approach, we found that cre-
ating rules based on traffic of only one host is not sufficient to detect the applications 
running on other hosts. However, when including data from multiple machines, the 
number of false positives and false negatives decreased considerably. 

For the Anomalous Login Activity Model, we recollected the approach, presented the 
model evaluation methods and results, and discussed the efforts of combining organi-
zation-specific models from multiple organizations for reducing false positives and for 
increasing the confidence of detected anomalies. The last part connects the work to 
the efforts of Task 5.2, though, unfortunately, our model combining experiments did 
not result in visible improvements. 
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