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Executive Summary 

This document is the first of the two deliverables (an intermediate report) produced by 
Task 5.2, which is "Federated learning of a global model based on shared locally 
trained models". Similar to Tasks 5.1 and 5.3, the main goal of this line of work in 
SAPPAN is to train a global model based on contributions from multiple parties, while 
the differences are in the types of contributions and in the approaches to their sharing 
and aggregation. Therefore, the deliverables D5.1, D5.3, and D5.5 have certain com-
mon parts, especially with respect to the background and motivation for specific mod-
els (e.g., for DGA detection and application profiling) and the context within the SAP-
PAN project. In general, WP5 focuses on sharing and federation for cyber threat de-
tection and response, and Task 5.2 is one of the three tasks investigating collaborative 
learning. In this initial deliverable of the task, we present the notes on the state-of-the-
art in combining machine learning models and the showcases that we are working on 
in the context of building global detection models. The presented showcases include 
sharing scenarios, built prototypes and models, first validation results, and planned 
experiments. The showcases are similar to the ones developed in WP3, namely DGA 
detection, application and host profiling, and detection of anomalous operations with 
processes. We note that they demonstrate the two main types of threat detection tech-
niques: detection of malicious objects (DGA detection) and malicious activities (anom-
alous process operations detection). 
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 1 Introduction 

This deliverable is an intermediate report produced by Task 5.2: "Federated learning 
of a global model based on shared locally trained models". The high-level goals of 
Tasks 5.1, 5.2 and 5.3 are essentially the same (while the approaches to achieving the 
goals differ), hence, the deliverables D5.1, D5.3, and D5.5 have certain common parts, 
including the overall SAPPAN project context. One of the key SAPPAN objectives is to 
build a sharing platform that can be used for privacy-preserving sharing of intrusion 
detection data, detection models and response handling information. Sharing enabled 
by the platform is expected to improve the local detection capabilities of each partici-
pating organization. Examples of participating organizations are cybersecurity ven-
dors, their partners (especially Managed Security Service Providers), their customers 
(especially those having internal security teams or experts), law enforcement agencies, 
and CERTs. Another flavour of sharing in the scope of SAPPAN is sharing among a 
cybersecurity vendor and various user groups of its customer organizations. In such 
cases, local detection capabilities can be, for instance, attack detection models built in 
individual endpoints (which is similar to the original use case of Federated Learning by 
Google - collaboratively learning Gboard’s query suggestion model on Android mobile 
phones, [1]). 
  
The work in WP5 is closely connected to WP3 and WP4, where one of the tasks is to 
develop local detection and response mechanisms. In WP5, we combine - in various 
ways - some of those local mechanisms in order to obtain aggregated ("more global") 
models with high detection power. These mechanisms include machine learning mod-
els, process mining models, as well as statistical models. In this intermediate report of 
Task 5.2, we describe the approaches to building global models based on shared - in 
the Federated Learning fashion - local models and experiments with those. For some 
of the experiments we already have initial results. Further results will be presented in 
the second deliverable of Task 5.2. 
  
This document is structured as follows. First, we present the notes on the state-of-the-
art in combining machine learning models for cybersecurity applications, covering en-
sembling, distributed learning and federated learning and including several publicly 
known use cases in deployed solutions. Then we briefly outline the context of this task 
in the overall scope of the SAPPAN project and explain the general concept of the 
task. Privacy for machine learning models is discussed afterwards. Then we proceed 
to describe several showcases illustrating different approaches to building global de-
tection models and first results of our experiments. The showcases include DGA de-
tection, application profiling, and anomalous behaviour detection in endpoints. Finally, 
we briefly conclude this deliverable. 
 

2 Approaches to Combining Machine Learning Models in Cyberse-
curity Applications 

Traditional Machine Learning (ML) techniques have been used extensively in cyberse-
curity research for quite some time, including applications to intrusion detection, threat 
analysis, malware classification, and identification of malicious domain names [2, 3, 4]. 
To give a few examples of specific techniques and applications, Restricted Boltzmann 
Machines have been used for network anomaly detection [5], neural networks have 
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 been used for misuse detection [6] and malware detection [7, 8], and deep reinforce-
ment learning has been used for intrusion detection in cyber-physical systems [9]. 
 
It has also become typical for cybersecurity vendors to power their technologies and 
services for detecting malicious activities and objects with machine learning. While the 
details of industrial ML-based engines and algorithms are usually not provided publicly, 
one can find a number of whitepapers, blog posts and articles claiming innovative cy-
bersecurity applications of machine learning [10, 11, 12, 13, 14]. 
 
In the last several years, the machine learning techniques employed by the cyberse-
curity industry have had to evolve to accommodate an explosion in the pure volume of 
available data and its decentralized nature. Models constructed to serve the increas-
ingly popular endpoint detection and response (EDR) products and more traditional 
endpoint protection (EPP) solutions offered by many cybersecurity firms face both of 
these challenges [15].  The cybersecurity realm naturally lends itself to methods of 
combining and distributing machine learning models and their training processes, and 
all such methods naturally have their benefits and drawbacks. 
 

 Distributed Machine Learning 
By Distributed Machine Learning we mean a machine learning system which distrib-
utes the computational load of training a model over several nodes [16].  The distribu-
tion of computational tasks enables the training of more complex models that would 
otherwise be too burdensome for a single machine. For example, stochastic gradient 
descent is a distributed machine learning algorithm that allows a random subset of 
worker nodes to make gradient updates and transmit these updates back to a master 
node. 
 
Distributed Machine Learning has found applications in cybersecurity thanks in part to 
the nature of the data, often collected from a disparate network of endpoints which 
themselves may be used as computational nodes for a distributed machine learning 
algorithm. In [17], the authors construct the SHIELD cybersecurity system which dis-
tributes the training and prediction of a number of machine learning algorithms, such 
as Latent Dirichlet Allocation, Support Vector Machines, and Recurrent Neural Net-
works, to detect anomalies and classify threats. The authors of [18] employ distributed 
machine learning techniques to classify traffic in edge nodes of IoT networks as mali-
cious or benign. A machine learning technique whose architecture mimics that of block-
chain and is trained using a distributed, decentralized version of stochastic gradient 
descent is introduced in [19]. 
 
Distributing the training of machine learning algorithms allows us to tackle enormous 
data sets and memory-hungry training algorithms more easily, but this typically comes 
at the cost of increased communication between a master node and a fleet of worker 
nodes.  This communication cost can be a serious bottleneck if we have, for example, 
hundreds of worker nodes jointly performing gradient descent in a high-dimensional 
space.  A second concern in distributed machine learning is that of security, as the 
more worker nodes we use the more likely it is that one or several of them may be 
compromised or controlled by an adversary.  This opens up distributed machine learn-
ing algorithms to eavesdroppers and poisoning attacks if proper precautions are not 
taken. 
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  Ensemble Models 
An Ensemble Model is an aggregation of two or more classifiers that has the potential 
for performance superior to any of its individual components.  A canonical example of 
ensemble model is random forest, which combines the results of many individual de-
cision trees to perform classification tasks. 
 
In the cyber security domain, ensemble methods have been used for intrusion detec-
tion in [20], wherein the authors use ensembles of voting classifiers, gradient boosting 
classifiers, random forests, and AdaBoost classifiers. Network flow classification was 
done in [21] using ensemble methods to better detect infected hosts. 
 
An often encountered problem in cybersecurity is incomplete and unbalanced data; for 
example, almost all attack detection-related data collected by cybersecurity vendors 
comes from false alarms, as true security incidents are quite rare. Since this makes it 
difficult to train well-performing classifiers (achieving high recall and precision), the au-
thors of [22] have used ensemble methods to obtain good performance on some of 
such problematic data sets. The same authors used ensemble methods which require 
training on only portions of the datasets in [23]. 
Ensemble models have the potential to outperform any individual classifier, but one 
pays the price of having to train multiple classifiers. When the underlying data sets are 
sufficiently large, this becomes infeasible or at least very expensive. Compared to ca-
nonical distributed machine learning algorithms, training ensemble models generally 
requires more computational power but less communication bandwidth. 
 

 Federated Learning 
The Federated Learning paradigm allows one to construct a global model by aggre-
gating models which are trained locally on end user devices [24]. To use Federated 
Learning to train, for example, a text predictor to be used on mobile devices, each end 
user updates their own model on their local device and then sends the local gradient 
update to a central aggregator. The central aggregator averages these gradient up-
dates to construct a global gradient update, which is then pushed to the end users. 
This process is iterated until convergence. 
 
Federated Learning presents its practitioner with two immediate and substantial ad-
vantages over a traditional system in which end-users simply send all of their user data 
to the central aggregator. Firstly, the communication cost is reduced substantially, 
since the local models (or model updates) are typically much smaller than the data on 
which they are trained. Secondly, the end user’s privacy and data confidentiality are 
preserved as they only transmit a model (or a model update) trained on their potentially 
sensitive data and not the data itself. The model may still leak sensitive data about the 
end-user, but Federated Learning can be done with a secure aggregator approach 
[25], which ameliorates this problem using techniques from cryptography. 
 
Federated Learning avoids the high communication costs of traditional distributed ma-
chine learning algorithms, as only models are transmitted between the master and 
worker nodes as opposed to entire end user data sets. Moreover, the individual local 
models are often much smaller and faster to train than individual global models one 
might use in a comparable ensemble modelling approach. 
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 While Federated Learning is a fairly new machine learning paradigm, it has already 
proved effective in constructing global models, e.g., for text prediction. Its relevance 
and value in the cybersecurity domain are not as well-understood, though there are a 
few existing works that showcase its potential. For instance, small, potentially vulner-
able IoT devices, growing in popularity in the modern world, which are unable to train 
good defensive models on their own, are natural candidates for beneficiaries of Fed-
erated Learning approaches in the realm of cybersecurity. 
 
Recently, cybersecurity vendor Kaspersky published a blog entry [26] explaining how 
they have implemented models using Federated Learning to filter out spam email. Sim-
ilarly, Federated Learning has been used to detect phishing emails in [27], where data 
is aggregated across multiple organizations while preserving user privacy. Federated 
Learning has been applied to intrusion detection in [28], where the authors integrate 
Federated Learning with blockchain technology to detect local models which have 
been poisoned with adversarial examples. In [29], the authors apply Federated Learn-
ing to malware classification to achieve high accuracy on the VirusTotal data set. The 
authors of [30] exploit the privacy-preserving nature of Federated Learning and com-
bine it with secure multi-party computation to construct support vector machine classi-
fiers for Android malware detection. A deep neural network for network anomaly de-
tection and traffic recognition and classification is trained in [31] using Federated 
Learning, outperforming centralized baseline methods. 
 
IoT devices are natural candidates for end-user nodes in Federated Learning systems, 
and the authors of [32] exploit this observation to train an intrusion detection model 
using Federated Learning. However, similar systems were attacked using poisoning 
methods in [33], showing that Federated Learning systems designed for cybersecurity 
are themselves potentially vulnerable to attacks. Another application of Federated 
Learning to intrusion detection was done in [34], where a long short-term memory 
(LSTM) model was trained using Federated Learning to take advantage of the limited 
computing power on end-user devices. In [35], Federated Learning has been applied 
to malicious URL detection in order to increase the accuracy of some detection models. 
 
Although the literature on applications of Federated Learning to cybersecurity is some-
what disparate and seems to lack any truly revolutionary work, the progress made so 
far is promising. 
 

 Model Combining in Deployed Cybersecurity Solutions 
While many cybersecurity vendors emphasize the use of Machine Learning methods 
in their solutions, there are very few claims of applying model combining approaches 
to detecting cyberattacks and malicious objects. Besides, some of those claims are 
quite vague, making readers guess what the implemented approaches are. 
 
Symantec seems to use a technique resembling Federated Learning for malware de-
tection. In [36], we find the following description: "Moreover, Symantec Endpoint Pro-
tection can train and test the engine of Advanced Machine Learning (AML) by following 
certain processes. First, the AML model will be downloaded to the client’s device and 
will let it run for a couple of days. During this period, AML’s engine will determine which 
of the client’s applications are exploiting its data. The information gathered will be for-
warded to Symantec which allows them to adjust their AML model. Then, this will be 
modified to block and remove the applications that are exploiting the client’s data." 
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Darktrace apparently uses ensembling in network intrusion detection. In [37], they say: 
"Employing multiple unsupervised, supervised, and deep learning techniques in a 
Bayesian framework, the Enterprise Immune System can integrate a vast number of 
weak indicators of anomalous behaviour to produce a single clear measure of threat 
probabilities." 
 
Avira clearly claims the use of ensembling for malware and phishing detection in [38]: 
"Avira does not rely on a single approach to the problem, but uses an ensemble of 
different Machine Learning techniques, ranging from linear models such as logistic re-
gression to nonlinear models such as kernelized support vector machines, random 
forests and, for problems where it is the best choice, Deep Learning techniques such 
as convolutional neural networks. Those techniques are applied for different detection 
tasks including malware detection and phishing detection, depending on the needs of 
the user and the capabilities of the underlying platform." 
 
In their whitepaper [39], F-Secure explains in detail one of their approaches to ML 
model training which exhibits key features of Federated Learning, such as offloading 
parts of the model training computations to 3rd party machines and providing higher 
confidentiality guarantees for 3rd party data due to sharing of local models instead of 
raw data. In fact, some of the models trained in this fashion were developed in SAP-
PAN, including those covered later in this report. 
 
As was mentioned above, Kaspersky published a blog post [12] elaborating on their 
application of Federated Learning to spam detection: "E-mails can contain private data, 
so storing and processing them in their original form would be unacceptable. (...) We 
solve that problem by using the federated learning method, neatly eliminating the need 
to collect legitimate e-mails and instead training models in a decentralized way. Model 
training takes place directly on the client’s mail servers, and the central server receives 
only the trained weights of the machine-learning models, not message text. At the cen-
tral server, algorithms combine the data with the resulting version of the model, and 
then we send it back to client’s solutions, where model again proceeds to analyse the 
stream of e-mails." 
 
We expect to see more cases of combining machine learning models in cybersecurity 
solutions in the coming years, likely including hybrid approaches and mixing tech-
niques from ensembling and distributed and federated learning. 
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 3 SAPPAN Context 

 
Figure 1. SAPPAN scheme regarding local and global response and recovery 

 
The overall scheme for sharing, detection, and response in SAPPAN is shown in Fig-
ure 1. The top half of the scheme describes the detection components, and the bottom 
half - the response components, while the left half corresponds to the local level, and 
the right half - to the global level. The goal of WP5 is to implement the global level with 
respect to sharing of data and models, building global models for detection, sharing of 
response and recovery information, as well as visualization. The tasks 5.1, 5.2 and 5.3 
include the development of global models for detection, based on several approaches. 
The general idea is to utilize the data and models developed in Task 3.3 on the local 
level by sharing them among multiple organizations to build global detection models. 
The goal is to end up with global detection mechanisms that are superior to the local 
ones. Another flavour of sharing in the scope of SAPPAN is sharing among a cyberse-
curity vendor and various user groups of its customer organizations. In such cases, we 
aggregate data or local attack detection models built in individual endpoints. Key prob-
lems with respect to sharing are, of course, privacy and efficiency, which are tackled 
by an assortment of approaches investigated in T5.1, T5.2 and T5.3. The approaches 
range from sharing of anonymized data, to sharing of only pre-trained models, to re-
placing sharing by other techniques. We apply these techniques to several showcases 
similar to those described in WP3 in order to build global detection models with ade-
quate recall and precision and providing certain levels of privacy and efficiency, includ-
ing cost-efficiency. 
 
In Task 5.2 and in this deliverable, our focus is on the approaches to building global 
models based on shared - in the Federated Learning fashion - local models. The gen-
eral Federated Learning paradigm and some of its characteristics and applications 
were presented in the "Approaches to Combining Machine Learning Models in Cyber-
security Applications" section above.  
It is worth noting that an automated system that can recognize true alerts (that require 
response actions) is the first step towards a truly automated response system. Under-
standing the type and severity of a security incident that triggered an alert can then be 
used to choose appropriate response actions, which can be suggested to security per-
sonnel or, in certain cases, even carried out automatically.  
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 4 Distributed Learning of a Global Model Based on Shared Local 
Models 

 Privacy 
The following briefly describes the landscape of privacy attacks against machine learn-
ing, followed by a short discussion about which of these attacks are relevant to this 
deliverable. The former part will be the same in all the three deliverables D5.1, D5.3 
and D5.5. Unwillingly disclosing private or sensitive information is in most cases inher-
ent to the useful distribution of knowledge, independent of whether the knowledge is 
shared in the form of a data set or a decision model. Depending on the sharing scenario 
and on the form of knowledge, different attacks become feasible. The so-called Infer-
ence attacks attempt to deduce sensitive information about data sets or models from 
their statistical characteristics and how the sets and models are processed. These in-
ference attacks are, among others, listed in Figure 2 which describes the attack land-
scape in the context of machine learning classifiers. We consider the following nota-
tion: The parameters Φ of a K-discriminative classifier F with domain X and codomain 
Y={1, ..., K} are trained on a labelled data set D={(xi,yi)}i=1,...,d as a subset of  X × Y 
drawn from unknown distribution D. Trained model F represents a function that com-
putes probabilities of class membership as follows: 
 

 
 
or just the predicted class as such: 
 

 

 
Figure 2. Attack landscape in machine learning. 

 
When restricting the view to the sharing scenarios in this deliverable, which is about 
building an ensemble (or aggregate) classifier out of locally trained models, the rele-
vant attack class is the Data Inference attacks [40, 41, 42] with an emphasis on Mem-
bership Inference and Model Inversion attacks. As trained models are willingly shared, 
these attacks can be performed in the white-box scenario, when an adversary has full 
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 access to the model and its weight. This enables Model Inversion attacks which might 
require access to the gradient computation of a shared deep learning model. The other 
attack classes, i.e., Model Extraction [43], Adversarial Examples [44], Poisoning [45] 
and Side-channel attacks [46], are not of relevance for this deliverable. Anonymization 
techniques, privacy-preserving training algorithms and other measures allow to shrink 
the attack surface or the feasibility of an attack. A privacy evaluation is demonstrated 
in the DGA showcase: For each DGA sharing scenario, we evaluate the privacy leak-
age by measuring the success of the relevant attacks. 
 

 Domain Generation Algorithm (DGA) Detection 
We use the Domain Generation Algorithm (DGA) Detection use case to analyse and 
compare the benefit of private data sharing within the deliverables D5.1 (global model 
based on shared anonymized data), D5.3 (global model based on shared local mod-
els), and D5.5 (global model without sharing local models). In addition, we investigate 
the privacy implications caused by data sharing for this use case in all the three deliv-
erables.  
 
Due to this commonality, the three deliverables share the same text for the sections 
that include general information such as DGA detection background, state-of-the-art 
classifiers, and parts of the evaluation setup. However, the sections that depend on 
specific sharing scenarios, such as the actual evaluation and the privacy study, are 
deliverable-specific. 

4.2.1 Background 
We presented DGA detection in D3.4 (Algorithms for Analysis of Cybersecurity Data) 
in detail. As a reminder, we briefly discuss the most important aspects here. 
 
Modern botnets rely on DGAs to establish a connection to their command and control 
(C2) servers. In contrast to the usage of single fixed IP-addresses or fixed domain 
names, communication attempts of DGA-based malware are harder to block as they 
utilise a large number of algorithmically generated domains (AGDs). The botnet herder 
is aware of the generation scheme and thus able to register a small subset of the gen-
erated domains in advance. The bots, however, query all generated AGDs, trying to 
obtain the valid IP-address for their C2 server. As most of the queried domains are not 
registered, the queries result in non-existent domain (NXD) responses. Only the do-
mains that are registered by the botnet herder in advance resolve successfully to a 
valid IP-address to their C2 server. 
 
The occurring NXDs within a network that are caused by the non-resolvable queries 
can be analysed in order to detect DGA activities and thereby to take appropriate coun-
termeasures even before the bots can be commanded to partake in any malicious ac-
tion. This detection is, however, not trivial, since NXDs can also be the product of typing 
errors, misconfigured or outdated software, or the intentional misuse of the DNS e.g., 
by antivirus software. In the following, we refer to this detection in which we separate 
benign from malicious domain names as the DGA binary classification task. 
 
In addition to this binary classification task, it is useful to not only detect malicious 
network activities but also to attribute the malicious AGDs to the specific DGAs that 
generated the domain names. This enables the malware family used to be narrowed 
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 down and targeted remediation measures to be taken. In the following, we refer to this 
classification as the DGA multiclass classification task. 
 
In the past, several approaches have been proposed to detect DGA activities within 
networks. These approaches can be split into two groups: contextless and context-
aware approaches. In SAPPAN, we focus on contextless approaches (e.g. [47, 48, 49, 
50, 51, 52]), as they rely entirely on information that can be extracted from a single 
domain name for classification. Thereby, they are less resource intensive and less pri-
vacy invasive than context-aware approaches (e.g. [53, 54, 55, 56, 57, 58]) that de-
pend on the extensive tracking of DNS traffic. Even though the classification of the 
contextless approaches relies solely on the domain name, they are able to compete 
with the context-aware approaches and achieve state-of-the-art performance [47, 48, 
50, 51, 52]. 
 
A variety of different types of machine learning techniques have been proposed for the 
classification of domain names which can be divided into two groups: feature-based 
classifiers (e.g. [48, 53]) and deep learning (featureless) classifiers (e.g. [47, 50, 51, 
52]). While the deep learning classifiers outperform the feature-based approaches in 
terms of classification performance [50, 51, 59, 60, 61], their predictions cannot be 
explained easily. For example, the predictions of a decision tree can easily be traced 
back to the individual features used to classify a domain name. Such a simple expla-
nation is not possible for the predictions of a deep learning model. However, feature-
based approaches rely on specific features that are hand-crafted using domain 
knowledge. The engineering of these features requires much greater effort compared 
to the usage of deep learning classifiers where all important information has to be en-
coded and provided to the model. Moreover, after the feature engineering, the best 
combination of the features has to be selected, which is not a trivial task. 
 
While the feature-based and deep learning based approaches differ in their classifica-
tion capabilities, they may also provide different privacy guarantees when trained on 
shared private data. Thus, we evaluate and compare feature-based as well as deep 
learning based approaches. 
 
In our evaluation, we include classifiers which were developed within the SAPPAN 
project. In detail, we include the two ResNet-based classifiers [62] that we introduced 
in deliverable D3.4 (Algorithms for Analysis of Cybersecurity Data). There, we demon-
strated that our classifiers achieve better classification scores (f1-score / false positive 
rate) than the state-of-the-art classifiers proposed in related work. We note that in order 
to address the explainability problem of deep learning classifiers, we developed in 
SAPPAN a visual analytics system [63] which tries to bridge the gap between the pre-
dictions of deep neural networks and human understandable features. 
 

4.2.2 Selected State-of-the-Art Classifiers 
In the following, we present several state-of-the-art classifiers which we use in different 
sharing scenarios to (1) measure the benefit of private data sharing in terms of classi-
fication performance and (2) analyse the provided level of privacy of the collaboratively 
trained classifier. 
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 First, we present the currently best contextless feature-based approach for DGA binary 
classification. We then continue with different types of deep learning classifiers, includ-
ing convolutional (CNNs), recurrent (RNNs), and residual neural networks (ResNets). 
 
FANCI 
 
Schüppen et al. [48] proposed a system called Feature-based Automated NXDomain 
Classification and Intelligence (FANCI). It is capable of separating benign from mali-
cious domain names. FANCI implements an SVM and an RF-based classifier and 
makes use of 12 structural, 7 linguistic, and 22 statistical features for DGA binary clas-
sification. The authors of FANCI state that it uses 21 features, but feature #20 is a 
vector of 21 values, resulting in 41 values in total. The 41 features are extracted solely 
from the domain name to be classified. Thus, FANCI works completely contextless. 
FANCI does not incorporate DGA multiclass classification support. 
 
Endgame 
 
Woodbridge et al. [51] proposed two RNN-based classifiers for the DGA binary and 
multiclass classification. Both classifiers incorporate an embedding layer, a long short-
term memory (LSTM) layer consisting of 128 hidden units with hyperbolic tangent ac-
tivation, and a final output layer. The last layer of the binary classifier is composed of 
a single output node with sigmoid activation while the last layer of the multiclass clas-
sifier consists of as many nodes as DGA families are present. We denote the binary 
classifier by B-Endgame and the multiclass classifier by M-Endgame in the following. 
 
NYU 
 
Yu et al. [52] proposed a DGA binary classifier that is based on two stacked one-di-
mensional convolutional layers with 128 filters for DGA binary classification. We refer 
to this model as B-NYU in the following. We additionally adapted the binary model to 
a multiclass classifier by interchanging the last layer similarly to the M-Endgame model. 
Additionally, we use Adam [64] as optimization algorithm and the categorical cross-
entropy for computing the loss during training. We refer to the multiclass enabled model 
as M-NYU in the following. 
 
ResNet 
 
In the context of SAPPAN, we developed a binary and a multiclass DGA classifier 
based on ResNets [62]. We presented all the details as well as a comparative evalua-
tion with the state-of-the-art in deliverable D3.4 (Algorithms for Analysis of Cybersecu-
rity Data). ResNets make use of so called skip connections between convolutional lay-
ers which build up residual blocks. These blocks allow the gradient to bypass layers 
unaltered during the training of a classifier and thereby effectively mitigate the vanish-
ing gradient problem [65, 66]. Our proposed binary classifier, B-ResNet, consists of a 
single residual block with 128 filters per convolutional layer while our proposed mul-
ticlass classifier M-ResNet has a more complex architecture of eleven residual blocks 
and 256 filters per layer. 
 
Class weighting 
 
Tran et al. [50] showed that the model of Woodbridge et al. [51] is prone to class im-
balances which reduce the overall classification performance of the DGA multiclass 
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 classifier. The authors mitigate the effect of class imbalances by using the proposed 
class weighting: 
 

 
 
The class weights control the magnitude of the weight updates during the training of a 
classifier. The rebalancing parameter γ denotes how much the dataset should be re-
balanced. Setting γ = 0 makes the model behave cost-insensitive, setting γ = 1 makes 
the classifier treat every class equally regardless of the actual number of samples per 
class included in the training set. Tran et al. empirically determined that γ = 0.3 works 
well for DGA multiclass classification. In all our experiments we thus use γ = 0.3 when 
working with cost-sensitive models. We denote deep learning models which incorpo-
rate class weighting with the suffix “.MI”. 
 

4.2.3 Evaluation Setup 
The main goals of our evaluation are (1) to determine whether we can improve the 
classification performance by leveraging different approaches for private information 
sharing, (2) to quantify the level of privacy after enabling privacy-preserving tech-
niques, and (3) to quantify the loss in utility after enabling privacy-preserving tech-
niques. 
 
For the deliverables D5.1, D5.3, and D5.5 we use the same evaluation setup (i.e. the 
same classifiers and datasets) in order to guarantee comparability of different infor-
mation sharing scenarios for the use case of DGA detection. 
 
Data Sources 
 
In total, we use five different data sources, four for obtaining benign data and one for 
malicious data. 
 
Malicious data 
 
We obtain malicious domains from the open-source intelligence feed of DGArchive [67] 
which contains more than 126 million unique domains generated by 94 different known 
DGAs. We make use of all the available data up to 2020-09-01. 
 
Benign data 
 
We obtain benign labelled NXDs from three different sources, namely from the net-
works of CESNET, Masaryk University, and RWTH Aachen University. For the data 
obtained from each of these sources, we perform a simple pre-processing step in which 
we remove all duplicates, cast every domain name to lowercase (as the DNS operates 
case-insensitive), and filter against our malicious data obtained from DGArchive to 
clean the data as well as possible. 
 
Additionally, we remove the intersection of all the samples obtained from two of our 
benign data sources, namely from CESNET and Masaryk University. The reason for 
this is that the networks of both parties are interconnected and the recording periods 
for data collection overlap. Note, thereby we are also removing samples from both data 
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 sources which would naturally be present in both networks even when they were not 
interconnected. Such samples could be common typos of popular websites. This issue 
could have an effect on classification performance of classifiers when samples of these 
networks are used for training or classification. However, since we record NXDs, we 
filter significantly fewer samples than if we were to record resolving DNS traffic. Thus, 
this effect could only have a negligible influence on the classification performance, but 
this has yet to be investigated. In the following we list the recording periods and the 
numbers of unique samples obtained from each source for benign data: 

• CESNET – Recording from 2020-06-15, 361995 samples 
• Masaryk University - One-month recording (2020-05-15 - 2020-06-15) , 

7973807 samples 
• RWTH Aachen University – One-month recording of September 2019, 

26008295 samples 
 

4.2.4 Sharing Scenario 
In each deliverable (D5.1, D5.3, D5.5), we investigate different sharing scenarios for 
the use case of DGA detection. In D3.6 (Cybersecurity Data Abstraction), the set of 
benign training samples has been identified as the main privacy-critical aspect of this 
use case. Thus, we focus in the following on the sharing of private benign labelled 
data. 
 
In the context of WP5, we started evaluating collaboratively trained global models with-
out sharing anonymized data or local models (D5.5). Thus, we are able to present the 
first evaluations in D5.5. For this deliverable, we already developed a sharing scenario 
which we will evaluate in the final version of this deliverable. We present this sharing 
scenario that we plan to evaluate in the following: 
 
Sharing Scenario - Ensemble Classification 
 
In this scenario, we build a global model based on shared local models. Each collabo-
rating party trains a local DGA detection model using their own private data. These 
models are then shared, enabling every party to create the global model. When a party 
wants to evaluate new domain names they feed them into all the local models. The 
final classification results can then be obtained by two approaches: 
 
1. Averaging the local models' confidence scores 
 
The final classification result equals the average of the local models' confidence 
scores. For instance, an average score above a certain threshold (e.g., 0.5) would 
indicate that the input domain is classified as malicious. 
 
2. Majority vote 
 
The final classification result equals the majority vote of the local models. A tie breaker 
is needed for an even number of local models. For instance, the tie breaker could be 
whether the average of the local models' confidence scores is above a certain thresh-
old. 
We also plan to quantify the loss in utility after applying different types of privacy-en-
hancing techniques. In this scenario, the overall privacy could be enhanced by using 
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 differentially private stochastic gradient descent to train the local models. However, 
this might have a negative impact on the classification performance. 
 

4.2.5 Planned Privacy Analysis 
In the next iteration of this deliverable, we plan to present an evaluation of privacy in 
the DGA sharing scenarios. This includes an assessment of the existing threats against 
these scenarios which are Model Inversion and Membership Inference. As the local 
models in this sharing scenario are sharded freely, Model Extraction attacks would not 
be of relevance here. Also, as the ensemble classifier is built via a collection of locally 
trained models, there is no global training procedure that an adversary can utilize as 
an attack surface. However, as the plain local models are accessible, the Input Infer-
ence attacks possibly pose a threat to privacy. This assessment will be quantified as 
objectively as possible, for instance by the success ratio of Membership Inference at-
tacks, or by a sample distance metric as it is currently done in deliverable 5.1 with the 
Levenshtein distance. For attacks that pose a severe threat towards privacy in sharing, 
sophisticated defence methods shall be evaluated, which can include training the local 
models with a privacy-preserving training algorithm (e.g., with differential privacy [68]) 
before sharing a model or utilizing the PATE approach [69]. Privacy-preserving tech-
niques must be evaluated and compared regarding the negative performance impact 
(e.g., loss in accuracy) they likely carry with them. 
 

 Application Profiling 

4.3.1 Background 
The background for application profiling in the context of sharing is similar in all the 
tasks of WP5. Hence, the following paragraph can also be found in the Deliverables 
D5.1 and D5.5. 
 
The general idea of application and host profiling is to model the behaviour of hosts 
and applications based on network data as well as system events, which was de-
scribed in more detail in Deliverable D3.4. Based on the profiles, the idea is to detect 
anomalies, i.e., when hosts or applications behave not as expected. Another use-case 
is to use the profiles while investigating incidents, e.g., to classify the type of a host 
before executing recovery steps. The application profiling can be further divided into 
identification and classification. For identification, the goal is to simply detect the oper-
ating system and the list of applications on a host. This already works well by just 
monitoring DNS traffic. The goal of the classification task is not to only identify an ap-
plication, but to compare the behaviour of a monitored application with a reference 
model. This can either provide more detailed information, like the application version, 
or information whether the application behaves as expected. The classification task 
relies more on system event data, e.g., monitored by the F-Secure RDR sensor or 
software like Sysmon, instead of network traffic. 
 

4.3.2 Sharing Scenario 
In the following, we will describe the sharing scenarios we plan to evaluate for the 
application profiling showcase. The scenarios are similar to the ones described in De-
liverable D5.1. However, instead of sharing datasets to compute global models, the 
local models are shared and combined to a global model. This has the advantage that 
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 no datasets need to be anonymized because they stay local. On the other hand, less 
information is shared and hence less information from the local level is available to 
build the global models. This is a trade-off between privacy and utility. At the moment 
of writing this deliverable, we have not yet conducted the experiments to measure this. 
In the following, we will outline the general idea of the three approaches. 
 
Sharing of rule sets to build a global model 
 
Instead of sharing datasets to extract rules on the global level, as described in Deliv-
erable D5.1, we directly share locally extracted rules to the global level. Ideally, the 
rule extraction process already takes care of filtering out personal information to re-
move it from such rules, which should only describe the behaviour of an application 
independent of specific users. The global model can be built by combining the local 
rules. For this merging process, we plan to evaluate multiple options. The base ap-
proaches are building a union of all rules, or building an intersection. The motivation 
for union is that it allows for integration of edge-case behaviour into the global rule set, 
which was only contained in one or a few of the shared local rules. However, besides 
benign edge case behaviour, such rules can also be a result from misconfigured or 
even infected applications, which leads to the motivation of building the intersection of 
all rules. By doing that, we end up with a global rule set that only contains rules that 
are assumed to be correct by all participating organizations. 
 
For the identification task, we expect that the union approach leads to a higher false 
positive rate but lower false negative rate, while the intersection approach leads to a 
lower false positive rate but higher false negative rate. Depending on the use-case, 
either approach or a hybrid one can be useful. For the classification task, we expect 
that a hybrid approach is necessary, because edge-cases are relevant for the detection 
of anomalies. On the other hand, such edge-cases are already anomalies, e.g. if they 
only occur in one rule set, and including them as expected behaviour to the global rule 
set might be misleading. 
 
Sharing of process mining models to build a global model 
 
The general idea of sharing process mining models is similar to the sharing of rule sets 
as described above. We compute process mining models in the form of petri-nets (as 
described in Deliverable D3.4). Petri-nets basically model all possible sequences of 
events, in our case either DNS events for the identification task or system events for 
the classification task. With a fitting syntax, these petri-nets could also be converted to 
a set of rules, by translating all transitions accordingly. The approaches using union or 
intersection described above can be applied in the same way to these models, by add-
ing or removing the corresponding transition. Hence, the same implications with re-
spect to utility apply. 
 
We plan to evaluate the described approaches for the rule-based and process mining 
approaches for the final version of this deliverable. 
 
Sharing of machine learning models to build a global model 
 
As described in Deliverable D5.1, we focus on the rule-based and process mining ap-
proaches, especially for the classification task. However, in case we are able to de-
velop machine learning models for the identification task that perform similar to the 
other approaches, these models can also be shared to the global level. Similar to the 
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 DGA detection showcase, these models can be combined in form of an ensemble-
classifier. However, because the other approaches seem more promising, it is not yet 
clear whether we will also evaluate the performance of such a machine learning based 
model on the global level. 
 

 Detection of Anomalous Process Launch and Process Access Operations 
in Endpoints 

The Process Launch Distribution (PLD) model for detecting anomalous process launch 
events was described in D3.4. Here, we elaborate on the local PLD models aggrega-
tion approach, show some experimental results, and introduce a similar but somewhat 
more advanced model for detecting anomalous process access events. 

4.4.1 Background 
As explained in D3.4, PLD models the distribution of process launch events in end-
points and detects events anomalous for this distribution. It belongs with the class of 
statistical distribution models with thresholds. The underlying assumptions in PLD are 
(i) that benign events in a training set are much more frequent than events connected 
with attacks, and (ii) that process launch events where common processes are used 
in anomalous ways are sufficiently reliable signs of attacks. PLD defines a score func-
tion that reflects how anomalous a given process launch event is: the lower the PLD 
score is, i.e., the closer it is to zero, the more anomalous the process launch event is 
from the PLD model point of view, thus, the more suspicious it is from our security 
intuition point of view. Given a training set of process launches observed in selected 
endpoints, we can build a PLD score distribution model and define several threshold 
values corresponding to exponentially lower percentiles of the PLD score cumulative 
distribution in the training set. Those thresholds naturally define anomaly categories 
(an example is provided in Figure 3 below), and the higher the anomaly category index 
is, the more suspicious a process launch event is. 
 

 
Figure 3. Density distribution of PLD score (blue curve) and thresholds inferred from it (orange 

lines). Left: PLD score linear scale. Right: PLD score log scale. In both graphs, from 
right to left: 7 thresholds for categories. 

 
At the inference time, the PLD score is computed for each observed process launch 
event and alerts are raised for the events with high anomaly categories. 
 

4.4.2 Distributed Online Training of PLD Model 
The simplest way to train a PLD model would be to collect details of process launch 
events occurring in customer machines in a security monitoring service backend and 
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 compute their PLD scores distribution and the thresholds. Since this would expose 
unnecessary customer information to the security provider and entail significant data 
handling costs, we took a different approach in the project. Simple local PLD models 
are produced at every participating endpoint at regular time points, and only those local 
models are sent to the backend and aggregated into a global PLD model there. This 
approach dramatically reduces the amount of data transmitted to and processed at the 
backend, thereby easing the data confidentiality concerns as well. While it is not ex-
actly federated learning in the original Google style, it exhibits clear similarities and 
brings the same key benefits. 
 

4.4.3 Combining Local and Global PLD Models, Experimental Results 
Since the chosen training approach requires local PLD models in every endpoint, we 
can compute for a new process launch event both its local and global PLD scores, and 
take both numbers into account when deciding whether an alert should be raised for 
the event. The availability of local PLD scores can help reduce the false positive rate 
by not alerting on events with high global but low local PLD anomaly categories. 
 
A local PLD model measures anomalousness relative to a single endpoint, and the 
global PLD model measures anomalousness within the entire set of the monitored 
endpoints. The interplay between these two models allows us to better understand how 
anomalous a process launch event truly is. In Figure 4, we display the count of events 
as a function of both global (the horizontal axis) and local (the vertical axis) anomaly 
categories (the categories definition can be found in D3.4). This plot is based on one 
month of data from all the endpoints in a validation set. As expected, the most populous 
square is when both models predict the event is not anomalous at all, and the number 
of events steadily decreases as both categories increase. The jump occurring when 
the local PLD anomaly category = 90 is due to a smoothing factor introduced into the 
defining equation of the PLD score, intended to highlight locally anomalous events. 
 

 
Figure 4. A heatmap displaying the number of events (log scale) contained in each (LPLD cate-

gory, GPLD category) pair, for one month’s worth of endpoint data. 

 
To further study the effectiveness of our PLD models, we plot in Figure 5 the probability 
that a process launch event triggers a rule-based (expert-defined) detection as a func-
tion of both PLD scores. As one would expect, this probability is generally higher for 
events which have high local and global PLD anomaly categories. The lack of obvious 
direct correlation and the ‘drop-offs’ in probability on either side of the global PLD = 60 
and 70 categories are likely consequences of various complexities of our detection rule 
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 engine (e.g., heuristic FP prevention rules) and the lack of events with the global PLD 
score higher than 70 in the validation data (see also Figure 4). Overall, the heatmap 
shows that our two models combined can serve as a decent predictor for how suspi-
cious a certain process launch is, validating their usefulness. 
 

 
Figure 5. Probability of detection for events as a function of both PLD scores, for one month’s 

worth of endpoint data. 

 

4.4.4 Anomalous Process Access (APA) Model 
The APA model is similar to PLD and can be considered an extension of the main 
ideas behind PLD. 
 
An event of the process access (called sometimes process open) type represents an 
operation of opening a running local process object by another local process. (We note 
that any process launch results in a process access event; our security monitoring 
sensor recognizes such cases and ignores process access events automatically gen-
erated by process launches.) Analysis of events of this type is useful for detecting ad-
versarial process manipulation techniques, such as DLL injection, thread execution 
hijacking and process hollowing, including important entries in the MITRE ATT&CK 
knowledge base: credential dumping [70], impairing defences [71], and so on. Simi-
larly, to the PLD case, two key attributes of process access events are actor (opening) 
process and actee (being opened) process. Another attribute relevant for security is 
desired access rights; we denote it by access_mode. In Microsoft Windows, for in-
stance, desired access value is a combination of several predefined permission flags 
[72]. As a simple example, the presence of all the defined flags in the attribute’s value 
is a sign of a potentially misconfigured actor which does not follow the least privilege 
principle and deserves attention of security analysts. 
 
Attribute 
name Details 

Actor An identifier of the local process opening another local process (the cur-
rent choice is to use the process file name as its ID). 

Actee An identifier of the local process to be opened (file name of the process). 

access_mode A bitmask specifying desired access rights. 
Table 1. Attributes for process access events. 
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The PLD approach to identifying anomalous actor - actee pairs does not take into ac-
count the behavioural 'uncertainty' of actor processes (the same applies, of course, to 
actee processes). A hypothesis that came up in the discussions with security experts 
and seems to be confirmed by experiments is that many false positives of PLD models 
can be explained by highly 'random' process launching behaviour of actors (which in-
formally means that it is difficult to guess what process a given actor will launch or - in 
the APA case - open). Examples of 'random' actors are executables belonging to Mi-
crosoft Windows Installer, Console Windows Host, Client / Server Runtime Subsystem. 
 

 
Figure 6. Processes manipulated by Microsoft Windows Installer. 

 
Figure 6 depicts the actees and the corresponding process open statistics for one of 
the most unpredictable actors: msiexec.exe, which is a part of the Microsoft Windows 
Installer technology. The collected data show that msiexec.exe opens approximately 
16,000 actee processes, 99% of which have random file names and are actually in-
stallation-time-specific temporary executables. 
 

 
Figure 7. Examples of deterministic actor-actee pairs. 

 
Figure 7 presents the other extreme: examples of actor-actee pairs which always ap-
pear together. In particular, the actors of these pairs can be considered fully predicta-
ble. So, any process access event with one of these two actors and a different actee 
would deserve a security investigation. 
 
It was discussed in [73] that the PLD method could potentially be improved by taking 
into account the 'uncertainty' of the process launching behaviour of actors. That idea 
was implemented in the APA model by introducing an (empirical) entropy factor that 
penalizes for highly uncertain actor's behaviour (cf. the PLD_score formula in D3.4): 
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where 

• #(𝑎) is the number of the occurrences of 𝑎 as the 1st element of a pair in the 
training set 

• #(𝑏) is the number of the occurrences of 𝑏 as the 2nd element of a pair in the 
training set 

• #(𝑎, 	𝑏) is the number of the occurrences of pair (𝑎, 	𝑏) in the training set 
• t  is the total number of elements in the training set 
•  𝛼1, 𝛼2, 𝛼3 and 𝛽1, 𝛽2, 𝛽3 are smoothing and other constants, often chosen to 

optimize the model performance 

and the added multiplier’s power is defined as an empirical entropy: 
 

𝐻(𝑎) = −5
#(𝑎, 𝑥)
#𝑎 log :

#(𝑎, 𝑥)
#𝑎 ;

+∈-

 

 
where B is the set of all the 2nd elements of the pairs which have 𝑎 as the 1st element. 
 
Another new element in the APA model is the use of the access_mode attribute. In 
addition to computing the 𝑠𝑐𝑜𝑟𝑒!"#$(𝑎, 	𝑏) for (actor, actee) pairs, we do the same for 
(ordered) pairs of the two other types: (actor, access_mode) and (actee, ac-
cess_mode). Our experiments showed that aggregating these three score values for a 
process access event by selecting the minimal of them as the event score brings sig-
nificant improvements in the APA model performance. 
 
The entropy factor brings an obvious asymmetry to the 𝑠𝑐𝑜𝑟𝑒!"#$(𝑎, 	𝑏) formula. The 
order of the elements in the three types of pairs was selected experimentally and can 
be re-considered later. 
Figure 8 shows the three selected APA attributes and the relations among them. 
 

 
Figure 8. Selected representation of process access events in the entity relationship form. 
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 APA Model in Action 
 
Here is a somewhat artificial but illustrative example of the effects of the APA model 
enhancements. The model alerts on the presence of the mimikatz tool (a post-exploi-
tation tool popular among attackers) in the endpoint data collected during a red team-
ing exercise. The process access event detected by the model is (msmpeng.exe, mimi-
katz.exe, 0x101001), which translates into: “A scanning service process of Windows 
Defender opens a local process mimikatz.exe with the desired access rights to termi-
nate the actee process and retrieve certain information about it”. 
 

Field 
index 

Field name Rating in the top anomalous process access 
events list 

I II III 

1 Actor name msmpeng.exe svchost.exe svchost.exe 

2 Actee name mimikatz.exe ngen.exe mscorsvw.exe 

3 Desired access_mode value 0x101001 0x1028 0x1028 

4 log!"( 𝑠𝑐𝑜𝑟𝑒#$%&(actor, actee)) ~4 ~− 1 ~1 

5 log!"( 𝑠𝑐𝑜𝑟𝑒#$%&(actor, access_mode)) ~− 𝟕 ~1 ~1 

6 log!"( 𝑠𝑐𝑜𝑟𝑒#$%&(actee, access_mode)) ~2 ~− 𝟒 ~− 𝟒 

Table 2. An excerpt from the "top anomalous process access events" list for a red teaming test 
data set. 

Since the mimikatz binary is not common, the entropy-enhanced PLD approach (row 
#4 in Table 2) does not rate events with mimikatz as actee as highly anomalous (note 
that the actor in this event - msmpeng.exe - is very common). For the same reason, 
the (actee, access_mode) pair’s score is moderately high (therefore the pair is not 
considered highly anomalous). However, the (actor, access_mode) pair is a very rare 
combination of a common executable and a common requested access mode and 
considered anomalous. Thus, the overall score of the event is low, which will draw 
attention of the security personnel. 
 

5 Conclusion 

In this deliverable, we presented the first results of Task 5.2: "Federated learning of a 
global model based on shared locally trained models". We started with an exposition 
of the state-of-the-art in combining machine learning models for cybersecurity applica-
tions, covering ensembling and distributed and federated learning and including sev-
eral publicly known use cases in deployed solutions. It appears that both academic 
research and industrial applications in this domain are not very mature at the moment, 
so the SAPPAN efforts seem relevant and timely. 
 
We then outlined the context of this task in the overall scope of the SAPPAN project 
and explained the general concept of the task. Several showcases illustrating different 
approaches to building global detection models and the first results of our experiments 
were presented after that. The showcases include DGA detection, application profiling, 
and anomalous behaviour detection in endpoints. In the anomalous behaviour detec-
tion line of work, we presented PLD models trained in a federated learning-like fashion, 
the use case for combining local and global PLD models, and the evidence of a good 
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 potential of the PLD models combining approach. We then introduced the APA model 
- as an extension of the PLD approach - for detecting anomalous process access 
events in endpoints. Despite some promising results and evidence, clearly, more work 
is still required for evaluating the models' performance and for shaping and implement-
ing improvement ideas. 
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