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1 Executive Summary 

This deliverable presents the results of the second phase of SAPPAN T5.2, continuing and extending 
the results described in SAPPAN D5.3. 

As one of SAPPAN’s main objectives is to build a sharing platform that can be used for privacy-preserv-
ing sharing of attack detection and response-related data, meta-data and models with a view to im-
prove the local detection capabilities for all participating parties and organizations, we discuss in this 
deliverable several methods of sharing local models based on ensembling, distributed and federated 
learning. 

In particular, we present in this document: 

• The evaluation and the privacy analysis of the proposed DGA detection methods in multiple 
sharing scenarios 

• A method, amenable to federated learning techniques, for deriving low-dimensional embed-
dings of computer processes, which can be used by and can improve the performance of 
other cybersecurity-relevant models, in particular, the models presented in D5.3 for detec-
tion of anomalous process launch and process access events in endpoints 

• Another potential use case for the embeddings approach, where the goal is to detect secu-
rity-related anomalous Windows Registry write events. 

 

2 Introduction 

The cybersecurity community has, for many years, studied and applied machine learning techniques 
to solve problems in the intrusion detection, threat analysis, malware classification, domain categori-
zation, and other areas. While machine learning techniques were originally used primarily to address 
an ever-increasing volume of attacks, attack techniques, and malicious samples, they are now also 
needed to deal with an evolving threat landscape, where more sophisticated tactics and adversaries 
are present. Businesses and organizations that were once able to rely on firewalls and anti-virus soft-
ware for cyber defence, now require more modern solutions, such as real-time security monitoring 
and Endpoint Detection and Response (EDR), to stay ahead of adversaries. In order to detect and re-
spond to attacks and breaches, it is no longer enough to be able to identify a single malicious payload 
or network anomaly – data and metadata from multiple sources and across multiple endpoints and 
time-slices must be combined and jointly analysed. 
 
EDR and other similar top-down approaches to cyber defence lend well to the process of combining 
and distributing machine learning models and their training processes. Multiple methods for combin-
ing machine learning inference and training mechanisms exist, including ensembling, distributed ma-
chine learning, and federated learning approaches. Each of these have their own pros and cons. 
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 While collaborative learning methods all tend to distribute compute load (in training and/or infer-
ence) over multiple separate computers, some methods, such as federated learning, also enable bet-
ter privacy preservation. A detailed discussion on different approaches for combining machine learn-
ing models for use in cybersecurity applications can be found in SAPPAN D5.3. 
 
One of SAPPAN’s main objectives is to build a sharing platform that can be used for privacy-preserv-
ing sharing of attack detection and response-related data, meta-data and models. This shared plat-
form is expected to improve the local detection capabilities for all participating parties and organiza-
tions. Examples of such parties include cybersecurity vendors, their partners (especially Managed Se-
curity Service Providers), their customers (especially those having internal security teams or experts), 
law enforcement agencies, and CERTs. 
 

 
Figure 1: SAPPAN detection and response sharing scheme 

Figure 1 illustrates the full sharing, detection, and response scheme covered by SAPPAN. The scheme 
can be split between top and bottom (detection components and response components) and be-
tween left and right (local level versus global level). The scope of WP5 falls in the red-outlined box – 
that is, the implementation of global-level sharing of data and models, global models for detection, 
sharing of response and recovery information and visualization tasks. The tasks in WP5 are intended 
to provide mechanisms to share data and models that were developed in WP3 across multiple organ-
izations, such that global detection models can be built. Ideally these global models will be superior 
to the local models developed in WP3. Key problems with respect to sharing are, of course, privacy 
and efficiency, which are tackled by an assortment of approaches investigated in T5.1, T5.2 and T5.3. 
The approaches range from sharing of anonymized data, to sharing of only pre-trained models, to re-
placing sharing with other techniques. We apply these techniques to several showcases similar to 
those described in WP3 in order to build global detection models with adequate recall and precision 
and providing certain levels of privacy and efficiency, including cost-efficiency. 
 
In Task 5.2 and in this deliverable, our focus is on approaches for building global models based on 
shared local models (or shared training process, in the federation learning style). In SAPPAN D5.3 (the 
first version of the deliverable produced by Task 5.2), we presented the initial approaches and exper-
imental results for model sharing in the settings of domain generation algorithms (DGA, used by mal-
ware to contact command and control servers) detection, application profiling, and anomalous be-
haviour detection in endpoints (detection of anomalous process launch and anomalous process ac-
cess events commonly associated with the execution of malicious software on a system). 
 
In this SAPPAN deliverable, we present the results of the second phase of Task 5.2, structured as fol-
lows. 
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Section 3 continues the DGA detection discussion started in SAPPAN D3.4 (Algorithms for Analysis of 
Cybersecurity Data) and in Section 4.2 of D5.3. Here, the focus is primarily on the evaluation and the 
privacy analysis of the proposed DGA detection methods. 
 
Section 4 provides a brief note on application profiling, presented in Section 4.3 of D5.3. 
 
In Section 5, we present a method for deriving low-dimensional embeddings of computer processes. 
The approach for constructing embeddings, developed originally in the Natural Language Processing 
(NLP) domain, is amenable to federated learning techniques, so the training of federated models can 
be carried out in a privacy-preserving manner. Additional benefits of the approach are: (i) efficiency 
in data storage and transmission; (ii) the produced embeddings can be used by and can improve the 
performance of other cybersecurity-relevant models, in particular, the models for detection of anom-
alous process launch and process access operations in endpoints, presented in Section 4.4 of D5.3; 
and (iii) the produced embeddings can potentially be used for context-specific similarity searches in 
threat research and analysis systems. 
 
We discuss another potential use case for the embeddings technique in Section 6, where the focus is 
on detection of anomalous Registry write events. 
 
In Section 7, we briefly conclude this deliverable. 
 
Finally, we want to note that we also experimented with model sharing approaches for the Anoma-
lous Login Activity model, introduced in Section 3.4.2 of SAPPAN D5.1 and evaluated in D5.2. How-
ever, since our investigations have not brought significant benefits or improvements, those are just 
briefly described in D5.2 and are not presenting in this D5.4. 
 

3 Domain Generation Algorithm (DGA) Detection 

 Introduction 

We use the Domain Generation Algorithm (DGA) detection use case to analyse and compare the ben-
efit of private data sharing within the deliverables D5.2 (global model based on shared anonymized 
data), D5.4 (global model based on shared local models), and D5.6 (global model without sharing local 
models). In addition, we investigate the privacy implications of sharing for this use case in all the three 
deliverables. As a consequence, the three deliverables share the same text for the subsections that 
include general information, such as the DGA detection background, state-of-the-art classifiers, and 
parts of the evaluation setup. However, the subsections that depend on specific sharing scenarios, 
such as the actual evaluation and the privacy study, are presented individually for each deliverable. 

We presented DGA detection in D3.4 (Algorithms for Analysis of Cybersecurity Data) in detail. Addi-
tionally, we discussed the most important aspects in the initial version of this deliverable (D5.3). How-
ever, since the following information is essential to understand the evaluation and the privacy analysis, 
we shortly repeat the most important parts. 

Note that we have published the results of our comprehensive study on collaborative machine learning 
for DGA detection in the research paper "The More, the Better? A Study on Collaborative Machine 
Learning for DGA Detection" [1]. Therefore, parts of the following subsections were previously pub-
lished in and adapted from [1]. 

 Background 

Modern botnets rely on DGAs to establish a connection to their command and control (C2 or C&C) 
servers. In contrast to using individual fixed IP-addresses or fixed domain names, the communication 
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 activities of DGA-based malware are harder to detect and block as such a malware generates a vast 
number of algorithmically generated domains (AGDs). The botnet herder is aware of the generation 
scheme and thus is able to register a small subset of the generated domains in advance. The bots, 
however, query all generated AGDs, trying to obtain a valid IP-address for their C2 server. As most of 
the queried domains are not registered, the queries result in non-existent domain (NXD) responses. 
Only the domains that are registered by the botnet herder in advance resolve successfully to a valid 
IP-address of the C2 server.  

The occurring NXDs within a network that are caused by the non-resolvable queries can be analysed 
in order to detect DGA activities and thereby to take appropriate countermeasures even before the 
bots can be commanded to participate in any malicious action. This detection is, however, not trivial, 
since NXDs can also be the product of typing errors, misconfigured or outdated software, or the inten-
tional misuse of the DNS, e.g., by antivirus software. In the following, we refer to this detection, in 
which we separate benign from malicious domain names, as the DGA binary classification task.  

In addition to this binary classification task, it is useful not to only detect malicious network activities 
but also to attribute the malicious AGDs to the specific DGAs that generated the domain names. This 
enables security analysts to get potentially valuable information about the malware used in the attack 
and to plan response and remediation actions. In the following, we refer to this classification as the 
DGA multiclass classification task. 

In the past, several approaches have been proposed to detect DGA activities within networks. These 
approaches can be split into two groups: contextless and context-aware approaches. In SAPPAN, we 
focus on contextless approaches (e.g., [2, 3, 4, 5, 6, 7]), as they fully rely on information that can be 
extracted from a single domain name to be analysed. Thereby, they are less resource intensive and 
less privacy invasive than context-aware approaches (e.g., [8, 9, 10, 11, 12, 13]) that depend on the 
extensive tracking of DNS traffic. Even though the contextless approaches rely solely on domain names, 
they are able to compete with the context-aware approaches and achieve state-of-the-art perfor-
mance [2, 3, 5, 6, 7]. 

A variety of different types of machine learning techniques have been proposed for the classification 
of domain names. Those techniques can be divided into two groups: feature-based classifiers (e.g., [3, 
8]) and deep learning (featureless) classifiers (e.g., [2, 5, 6, 7]). While the deep learning classifiers out-
perform the feature-based approaches in terms of classification performance [5, 6, 14, 15, 16], their 
predictions cannot be explained easily. For example, the predictions of a decision tree can easily be 
traced back to the individual features used to classify a domain name. Such a simple explanation is not 
possible for the predictions of a deep learning model. However, feature-based approaches rely on spe-
cific features that are hand-crafted by utilising domain knowledge. The engineering of these features 
requires much higher effort compared to the use of deep learning classifiers. Moreover, after the fea-
ture engineering, the best combination of the features has to be selected, which is not a trivial task. 

While the feature-based and deep learning-based approaches differ in their classification capabilities, 
they may also provide different privacy guarantees when trained on shared private data. Thus, we 
evaluate and compare feature-based as well as deep learning-based approaches. 

In our evaluation, we include the classifiers which were developed within the SAPPAN project. In detail, 
we include the two ResNet-based classifiers [17] that we introduced in Deliverable D3.4 (Algorithms 
for Analysis of Cybersecurity Data). There, we demonstrated that our classifiers achieve better classi-
fication scores (f1-score/false positive rate) than the state-of-the-art classifiers described in related 
work. Note that in order to deal with the explainability problem of deep learning classifiers, we devel-
oped in SAPPAN a visual analytics system [18], which tries to bridge the gap between the predictions 
of deep neural networks and human-understandable features, and reported the results in the Deliver-
ables D3.8 and D3.9. Additionally, in Deliverable D5.2, we reported the feature-based DGA multiclass 
classifier EXPLAIN [19], developed in SAPPAN, which is explainable by design because its predictions 
are easier to trace back to features. 
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  Selected State-of-the-Art Classifiers 

In the following, we present several state-of-the-art classifiers which we use in different sharing sce-
narios in order to: (1) measure the benefit of private data sharing in terms of classification performance 
and (2) analyse the provided level of privacy of the collaboratively trained classifier.  

First, we present the currently best contextless feature-based approach for DGA binary classification. 
We then continue with different types of deep learning classifiers, including convolutional (CNNs), re-
current (RNNs), and residual neural networks (ResNets). 

3.3.1 FANCI 

Schüppen et al. [3] proposed a system called Feature-based Automated NXDomain Classification and 
Intelligence (FANCI). It is capable of separating benign from malicious domain names. FANCI imple-
ments an SVM and an RF-based classifier and makes use of 12 structural, 7 linguistic, and 22 statistical 
features for DGA binary classification. The authors of FANCI state that it uses 21 features, but feature 
#20 is a vector of 21 values, resulting in 41 values in total. The 41 features are extracted solely from 
the domain name to be classified. Thus, FANCI is completely contextless. FANCI does not incorporate 
DGA multiclass classification support. 

3.3.2 Endgame 

Woodbridge et al. [6] proposed two RNN-based classifiers for the DGA binary and multiclass classifica-
tion. Both classifiers incorporate an embedding layer, a long short-term memory (LSTM) layer consist-
ing of 128 hidden units with hyperbolic tangent activation, and a final output layer. The last layer of 
the binary classifier is composed of a single output node with sigmoid activation while the last layer of 
the multiclass classifier consists of as many nodes as the number of the target DGA families. We denote 
the binary classifier by B-Endgame and the multiclass classifier by M-Endgame in the following. 

3.3.3 NYU 

Yu et al. [7] proposed a DGA binary classifier that is based on two stacked one-dimensional convolu-
tional layers with 128 filters. We refer to this model as B-NYU in the following. We additionally adapted 
the binary model to a multiclass classifier by interchanging the last layer similarly to the M-Endgame 
model. Additionally, we use Adam [39] as optimization algorithm and the categorical cross-entropy for 
computing the loss during training. We refer to the multiclass enabled model as M-NYU in the follow-
ing. 

3.3.4 ResNet 

In the context of SAPPAN, we developed a binary and a multiclass DGA classifiers based on ResNets 
[17]. We presented the details as well as a comparative evaluation with the state-of-the-art in Deliver-
able D3.4 (Algorithms for Analysis of Cybersecurity Data). ResNets make use of so-called skip connec-
tions between convolutional layers which build up residual blocks. These blocks allow the gradient to 
bypass the layers unaltered during the training of a classifier and thereby effectively mitigate the van-
ishing gradient problem [20, 21]. Our proposed binary classifier, B-ResNet, consists of a single residual 
block with 128 filters per convolutional layer, while our proposed multiclass classifier M-ResNet has a 
more complex architecture of eleven residual blocks and 256 filters per layer. 

 Class Weighting 

Tran et al. [5] showed that the model of Woodbridge et al. [6] is prone to class imbalances, which 
reduce the overall classification performance of the DGA multiclass classifier. The authors mitigate the 
effect of class imbalances by using the proposed class weighting: 
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 The class weights control the magnitude of the weight updates during the training of a classifier. The 
rebalancing parameter γ controls how large part of the dataset should be rebalanced. Setting γ = 0 
makes the model behave cost-insensitively, while setting γ = 1 makes the classifier treat every class 
equally regardless of the actual number of samples per class included in the training set. Tran et al. 
empirically determined that γ = 0.3 works well for DGA multiclass classification. In all our experiments 
we thus use γ = 0.3 when working with cost-sensitive models. We denote deep learning models which 
incorporate class weighting with the suffix “.MI”. 

 Data Sources 

The main goals of our evaluation are: (1) to determine whether we can improve the classification per-
formance by leveraging different approaches for private information sharing, (2) to quantify the level 
of privacy after enabling privacy-preserving techniques, and (3) to quantify the loss in utility after en-
abling privacy-preserving techniques. 

For the deliverables D5.2, D5.4 and D5.6, we use the same evaluation setup (i.e., the same classifiers 
and datasets) in order to guarantee comparability of different information sharing scenarios for the 
use case of DGA detection. 

In total, we use five different data sources, four for obtaining benign data and one for malicious data. 

3.5.1 Malicious Data 

We obtain malicious domains from the open-source intelligence feed of DGArchive [22] which contains 
more than 126 million unique domains generated by 95 different known DGAs. We make use of all the 
available data up to 2020-09-01. 

3.5.2 Benign Data 

We obtain benign labelled NXDs from four different sources. Three of the sources are the networks of 
project partners, namely, CESNET, Masaryk University and RWTH Aachen University. As real-world be-
nign training data from diverse sources is very difficult to obtain but crucial for a comprehensive study 
on collaborative machine learning, we tried to get additional data from other parties. Fortunately, Sie-
mens AG, a partner in another research project, provided us with additional data for our analysis. Due 
to this rich data, we are able to conduct collaborative machine learning experiments that are similar 
to a real-world setting. Moreover, the different benign data sources enable us to investigate whether 
collaboratively trained classifiers generalize well to different networks. 

For data obtained from each of these sources, we perform a simple pre-processing step in which we 
remove all duplicates, cast every domain name to lowercase (as the DNS operates case-insensitive), 
and filter against our malicious data obtained from DGArchive to clean the data as much as possible. 
Additionally, we remove the intersection of all the obtained samples from two of our benign data 
sources, namely from CESNET and Masaryk University. The reason for this is that the networks of both 
parties are interconnected and the recording periods for data collection overlap. Note that thereby we 
also remove samples from both data sources which would naturally be present in both networks even 
if they were not interconnected. Such samples could be, e.g., commonly mistyped popular websites. 
This issue could have an effect on the classification performance of classifiers when samples of these 
networks are used for training or classification. However, since we record NXDs, we filter significantly 
fewer samples than if we were to record resolving DNS traffic. Thus, this effect likely has only a negli-
gible influence on the classification performance, but this has yet to be investigated. In the following, 
we list the recording periods and the number of unique samples obtained from each source for benign 
data. 

RWTH Aachen University (RWTH): We obtained a one-month recording of September 2019 from the 
central DNS resolver of RWTH Aachen University which is located in Germany. This recording comprises 
approximately 26 million unique benign NXDs that originate from academic and administrative net-
works, student residences' networks, and networks of the university hospital of RWTH Aachen.  
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 Masaryk University (MU): We obtained a one-month recording from mid-May 2020 until mid-June 
2020 from the networks of Masaryk University which is located in the Czech Republic. This recording 
contains approximately 8 million unique benign samples.  

CESNET: We received additional benign samples from CESNET, an association of universities of the 
Czech Republic and the Czech Academy of Sciences consisting of 27 members in total. CESNET operates 
and develops the national e-infrastructure for science, research, and education. From this data source, 
we obtained a subset of occurred NXDs from the day recording of 2020-06-15. In total, we obtained 
approximately 362,000 unique samples.  

Siemens: We obtained a one-month recording of July 2019 that comprises approximately 21 million 
unique NXDs from several DNS resolvers of Siemens AG which is a large company that operates in Asia, 
Europe, and in the USA. 

 Sharing Approaches 

In each deliverable (D5.2, D5.4, D5.6), we investigate different sharing scenarios for the use case of 
DGA detection. When preparing the initial version of this deliverable (D5.3), we planned to evaluate 
only one sharing scenario for distributed learning of a global model based on shared local models: 
Ensemble Classification. However, in our work on Task T5.1 (Distributed Learning of a global model 
based on shared anonymized data), an analysis on the envisioned sharing scenarios was conducted, 
which suggested to relocate First-n-layer sharing (Feature Extractor Sharing) to this deliverable. The 
reasons for this decision are reported in Deliverable D5.2. Thus, in this deliverable, we examine two 
sharing approaches: 

3.6.1 Sharing Scenario – Ensemble Classification 

In this scenario, we build a global model based on shared local models. Each collaborating party trains 
a local DGA detection model using their own private data. These models are then subsequently shared 
in such a way that every party is able to create the global model. When a party wants to evaluate new 
domain names, they feed them into all the local models. The final classification results can then be 
obtained by two approaches: 

Averaging the Local Models' Confidence Scores (Soft Labels) 

The final classification result is the average of the local models' confidence scores. For instance, an 
average score above a certain threshold (e.g., 0.5) would indicate that the input domain is classified as 
malicious. 

Majority Voting (Hard Labels) 

The final classification result is the majority vote of the local models. A tie-breaker is needed for an 
even number of local models. For instance, the tie-breaker could be whether the average of the local 
models' confidence scores is above a certain threshold. 

We also planned to quantify the loss in utility after enabling different types of privacy-enhancing tech-
nologies. In this scenario, the overall privacy could be enhanced by using differentially private stochas-
tic gradient descent to train the local models. However, this might have a negative impact on the clas-
sification performance. 

3.6.2 Feature Extractor Sharing (Sharing of First-n-layers of Deep Learning 
Classifiers) 

We designed an approach for sharing feature extractors as parts of trained deep learning-based clas-
sifiers. We assume that the first-n-layers of a deep neural network are used as a sort of feature extrac-
tor while the remaining layers are used for the actual classification. 

In Figure 2 we display such a layer partition. 
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Figure 2: Partition of a neural network classifier into feature-extractor and classification layers. 

Every party participating in the collaborative training of a classifier in this scenario trains a local DGA 
detection model using their own private data. Thereafter, each party can share their feature extractor 
(i.e., the classifier’s first-n-layers). A possible approach for combining the feature extractors of differ-
ent neural networks belonging to different parties can be seen in Figure 3. 
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Figure 3: Approach for combining feature extractors of different neural networks and parties. 

Here, each participant combines their own and received feature extractors to a new model. To this 
end, the feature extractors are applied in parallel and their outputs are concatenated and flattened. 
Additionally, a new dense classification layer is appended to the new model. This classification layer is 
not trained yet, thus the organizations freeze the weights of the feature extractors and use their local 
training data to train the classification layer separately. 

 Comprehensive Collaborative Machine Learning Study 

In the following, we present a comprehensive study on collaborative machine learning approaches for 
deriving a global model based on shared local models. First, we provide an overview of our evaluation 
setup, including our dataset generation scheme and the evaluation methodology used. Subsequently, 
we present different sharing scenarios which are derived from research questions on possible real-
world application environments for trained classifiers. These sharing scenarios are used to assess the 
performance of the different sharing approaches. Finally, we present the results of the study, including 
a direct comparison to the sharing approaches developed in Deliverable D5.6. 

3.7.1 Dataset Generation 

We first describe the process of generating suitable datasets for our experiments, using the above data 
sources. We provide an illustration of this process in Figure 4 for convenience. 
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Figure 4: Datasets generation scheme 

In order to create diverse datasets and to cope with the large number of available training samples, 
we first subsample our malicious labelled data into a smaller set that includes at most 10,000 samples 
per DGA family. We include all the samples for the DGA families for which less than 10,000 samples 
are available. Thereby, we also include samples from the underrepresented DGA families. We do this 
because in [23] we showed that by including a few samples to the training set of a classifier, its detec-
tion performance for underrepresented DGAs can be increased significantly without reducing its de-
tection rates for well-represented DGAs.  

From the selected subset, we then split 20% (approximately 111,000 samples) stratified across all the 
included DGA families for the test sets. For each of our benign data sources, we select individual mali-
cious training data by subsampling 50% (approximately 223,000 samples) from the remaining malicious 
labelled samples. By subsampling from a larger common pool of malicious samples, we can create four 
training sets that contain both duplicate and unique malicious samples. We do this because in a real-
world scenario, it is very likely that the collaborating parties use overlapping sets of malicious samples. 
Note that in contrast to the benign labelled samples, the malicious samples are available in public 
repositories and are not privacy-sensitive.  
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 The benign samples are not shared between different training sets as they are considered the main 
privacy-critical asset of the collaborative DGA detection use case. We carry out a similar selection pro-
cess for the benign training and testing samples. From each of the four benign data sources, we ran-
domly subsample the same number of benign training and testing samples as we did for malicious 
training and testing samples, respectively.  

We use these data selections to create four training and testing dataset pairs, one for each benign data 
source. To this end, we combine the respective malicious and benign data selections to balanced train-
ing and testing datasets. Note that during this dataset generation, we ensured that the training and 
testing datasets for each party are completely disjoint. Each of the four training and testing datasets 
include approximately 446,000 and 223,000 samples, respectively.  

Additionally, we create two balanced training datasets that include publicly available benign data using 
the same generation process. These datasets are used to train initial global models for our federated 
learning experiments in Deliverable D5.6. The public benign data originates from the Tranco list [24] 
which contains a ranking of the most popular domains that has been hardened against manipulation. 
Using this data, we create two datasets: one contains the top entries on the list; the benign data of the 
other dataset is a set of random samples. 

3.7.2 Methodology and Sharing Scenarios 

Using these datasets, we are able to precisely measure the influence of collaborative machine learning 
on the classification performance of various classifiers. To obtain reliable results, we repeat the whole 
dataset generation process five times and thereby create 20 individual training and testing dataset 
pairs which include malicious labelled samples from DGArchive and benign data from the four benign 
data sources. In the same way, we also generate ten training datasets used in the federated learning 
experiments for training an initial global model using publicly available data in Deliverable D5.6. In the 
following, we repeat every experiment five times and present the averages of the individual experi-
ment results. Note that the datasets are generated similarly to a five-fold cross validation, i.e., the 
testing datasets are completely disjoint with both the training datasets and the testing datasets within 
the repetitions.  

In the following, we exclude the feature-based approach FANCI from our study and concentrate on the 
three deep learning-based approaches (B-Endgame, B-NYU, and B-ResNet), as neither Feature Extrac-
tor Sharing nor Federated Learning (which is examined in Deliverable D5.6) is possible using a feature-
based approach. However, feature-based approaches for collaborative machine learning are analysed 
in detail in Deliverable D5.2. In this work, we train all the deep learning classifiers using early stopping 
with a patience of three epochs to avoid overfitting and assess their performance during training on 
holdout sets that consist of random 5% splits of the used training data. 

Additionally, in our comprehensive collaborative machine learning study, we focus on binary DGA de-
tection. The reason for this is that in D3.6 (Cybersecurity Data Abstraction), the set of benign training 
samples has been identified as the main privacy-critical asset of this use case. The malicious data used 
in this use case is mostly publicly available and thus has no privacy constraints. The difference between 
the training samples used in the binary and multiclass classification tasks is that the malicious samples 
of the multiclass task are additionally labelled with the DGA that generated a specific domain. How-
ever, as this information is not privacy-sensitive, we focus on the binary classification task. For simplic-
ity, we always refer to the binary versions of the three investigated deep learning classifiers as End-
game, NYU, and ResNet in the following Sections. 

To measure the impact of collaborative machine learning on classification performance, we evaluate 
all the possible combinations of participants for each examined approach. Overall, our comprehensive 
study consists of 13,440 evaluation passes; 4,200 evaluations (including the baseline evaluations) are 
performed for this deliverable. The total number of individual experiments differs across the studied 
collaborative machine learning approaches. In the following, we provide an overview of the numbers 
of experiments done per investigated approach. 
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 3.7.3 Baseline 

All the sharing approaches are compared against the baseline to evaluate their performance. The base-
line evaluations are similar to traditional training and testing of a classifier using training data from a 
single organization. Each organization trains their own model using their own private benign data and 
malicious training samples from DGArchive. No training data is shared among any organizations and 
also no global model is derived.  

We train one classifier for each of the four organizations and evaluate them on every available test 
dataset. To this end, we perform five repetitions of training and testing for four organizations (RWTH, 
MU, CESNET, Siemens) and three classifier models (Endgame, NYU, ResNet), thus performing 5 · 4 · 4 · 
3 = 240 baseline evaluations in total. 

3.7.4 Ensemble Classification 

In Ensemble classification, a global classifier is built using the classifiers trained by each organization. 
Similar to the baseline scenario, each organization first trains a classifier using their own private benign 
data. These classifiers are then shared with all the participants. Each party now combines the individual 
classifiers to an ensemble classifier. The combination of the classifiers can be done (1) by using a ma-
jority voting system on the binary labels (Hard Labels) or (2) by averaging the results of the individual 
classifiers to a single confidence score (Soft Labels). A tie is possible when using the majority voting 
system with an even number of participants. In such a case, we resort to the soft labels approach, 
where we average all the predictions and predict a domain name as malicious if the average is greater 
than 0.5 and as benign otherwise.  

In total, there are eleven possible combinations of organizations for building a combined model using 
four different parties. Here, we also evaluate classifiers on all the four different testing datasets, re-
gardless of the combination of the local classifiers used. Thereby, we are able to measure the general-
isation capability of classifiers on benign data from unknown networks. In total, we perform five repe-
titions using eleven possible organization combinations, two ensemble approaches (Hard and Soft La-
bels), four test datasets, and three classifier models (5 · 11 · 2 · 4 · 3 = 1320 evaluations). 

3.7.5 Feature Extractor Sharing 

This sharing approach is related to Transfer Learning. All the deep learning classifiers under consider-
ation use a fully connected (dense) layer to output the final classification score. This layer can be 
viewed as a sort of classification layer that performs a logistic regression for binary classification. The 
output of this layer is a confidence score that indicates whether an input domain is benign (score < 
0.5) or malicious (score ≥ 0.5). All the layers before this classification layer can be treated as a feature 
extractor, which produces features used for classification by the final output layer. Instead of sharing 
the complete classifier as in the naive Ensemble approach, we hope here to reduce the model’s privacy 
leakage by sharing fewer layers. Thus, in this approach, each organization trains a model based on their 
own private training data. Subsequently, the trained feature extractors are shared among all the par-
ticipants. Each organization now combines the received feature extractors with their own to create a 
new model. To this end, the feature extractors are applied in parallel and their outputs are concate-
nated and flattened. Additionally, a new dense classification layer is appended to the new model. This 
classification layer is not trained yet, thus the organizations freeze the weights of the feature extractors 
and use their local training data to train the classification layer separately. In the end, each organization 
obtains a model which incorporates information about the samples from the other organizations 
through the shared feature extractors. The resulting models are not identical, since the training of the 
classification layer is performed on private training samples.  

For this approach, each organization first trains a classifier using its own private benign data and de-
rives an individual feature extractor. Then we combine the four feature extractors into eleven possible 
classifiers. In contrast to ensemble classification, here we require additional training to fit the final 
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 classification layer that combines the results of the shared feature extractors. Hence, in total we per-
form five repetitions using eleven possible organization combinations with four training datasets, four 
test datasets, and three classifier models (5 · 11 · 4 · 4 · 3 = 2640 evaluations). 

3.7.6 Sharing Scenarios 

The sharing approaches are evaluated in different scenarios which are derived from research questions 
on possible real-world application environments for trained classifiers.  

Best Case: In this scenario, multiple network operators jointly train a classifier and are mostly inter-
ested in a good performance in their own networks. This is related to the following research question: 
is collaborative training beneficial for organizations that mostly classify data from their own distribu-
tion? In this best-case scenario, we provide averaged results for the classifiers that are evaluated only 
on the test datasets containing the samples coming from the organizations involved in the training. 

Average Case: The average of all the evaluations is used as a general performance indicator of the 
trained classifiers for each collaborative machine learning approach. We use this scenario for a com-
parative evaluation of the different sharing approaches.  

Worst Case: The worst-case scenario contrasts the best-case scenario. Here, the classifiers are evalu-
ated on all the test datasets that contain samples from the organizations that did not participate in the 
classifier training. Using this scenario, we examine the generalization capability of collaboratively 
trained classifiers (i.e., whether the classifiers improve in their detection performance for samples 
originating from different networks). 

3.7.7 Evaluation Results 

In this subsection, we present the results of our comprehensive study. First, we highlight differences 
between the datasets of the four organizations and provide an overview of the performance in the 
three sharing scenarios. Subsequently, we present the results of our comparative evaluation. Finally, 
we analyse the effect of the number of participants in collaborative machine learning. 

Network Differences & Sharing Scenarios 

To better explain the actual evaluation steps and to detail the computations done for the different 
sharing scenarios, we present the average scores for the five repetitions of the baseline experiment 
using the Endgame classifier in Table 1. We provide the results for the Endgame classifier as an exam-
ple. The results for the NYU and ResNet models are similar. 
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Table 1: Averaged baseline results for Endgame classifier 

Here we list the average scores for the five repetitions of Endgame classifiers per training dataset used 
and per test dataset separately. The true positive rates (TPRs) per training network are equal for all 
the test networks as we use the same malicious samples within all the four test datasets within a rep-
etition. The best false positive rates (FPRs) on the individual test networks are always achieved by the 
classifiers that were trained using benign samples originating from the same network as the testing 
samples. This is expected since those classifiers are specifically trained to extract and classify charac-
teristics of the benign domain names from the respective network. For example, benign samples from 
different networks may miss certain features or exhibit different characteristics. The average of the 
table entries where the training network is the same as the test network represents the best-case 
scenario and is presented at the bottom of the table. The classifiers trained using benign samples from 
distinct networks achieve different results for the individual test datasets. Samples from CESNET are 
most commonly classified incorrectly. In some cases, the FPR for these evaluations is even greater than 
6%. We reckon that this is due to the fact that the samples from this network are the most diverse, as 
they originate from over 27 different organizations. Moreover, we filtered out the intersection of the 
samples from the Masaryk University network with the samples from CESNET as both networks are 
interconnected. Thereby, we likely removed easily recognizable samples that are naturally occurring 
in both networks. This could be the reason for the larger FPRs for Masaryk University and CESNET 
compared to those for the other two networks. Similarly to the best case, we provide the results for 
the average and worst case in the lower part of Table 1. While the average case is calculated using the 
average of all the table entries, the worst case only contains the results of the entries for which the 
training network differs from the test network. The results for the different sharing scenarios are not 
of interest for the baseline evaluation. As could be expected, the best case results are better than the 
average case results, which are better than the worst case results. 

3.7.8 Sharing Approaches 

In this section, we compare the different approaches for collaborative machine learning. First, for com-
parison and to show that training on publicly available data is not enough for DGA detection on private 
data, we display the averaged results achieved by the two different types of pre-trained models that 
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 we use within our Federated Learning experiments in Deliverable D5.6 for all the three classifier types 
over all the test datasets in Table 2. 

 

Table 2: Results of pre-trained models using public data 

All the six trained classifiers yield high FPRs between 33% and 59%, indicating that training on publicly 
available data alone is insufficient for classifying privacy-sensitive domain names. 

In Table 3, we present the results for the average case, for all the classifiers, and all the collaborative 
machine learning approaches examined in this deliverable. 

 

Table 3: Results of the average case including all classifier types for the collaborative machine 
learning approaches of D5.4 

In order to assess whether the collaborative training is beneficial, we additionally provide the baseline 
results at the top of the table. For convenience, we colour table entries red if the scores are worse 
than the ones of the baseline and green otherwise. All the approaches achieve better TPRs than the 
baseline. This is an expected outcome because the training datasets used by the individual organiza-
tions contain additional malicious labelled samples from which a collaboratively trained classifier can 
learn. Thus, due to collaboration, intelligence about additional malicious labelled training samples is 
combined in the jointly trained classifiers.  

The only approach that leads to better classification results regarding the accuracy (ACC) and FPR is 
Feature Extractor Sharing. Ensemble classification leads to worse results than the baseline. Further-
more, it makes little difference whether soft or hard labels are used.  

While the absolute improvement achieved by collaborative machine learning may seem rather small, 
the relative reduction in the FPR is significant and could be decisive for the real-world application of 
classifiers. Compared to the baseline classifiers, Feature Extractor Sharing achieves on average a FPR 
reduction of 33.5%, 31.9%, and 22.8% for Endgame, NYU and ResNet, respectively. In summary, addi-
tional malicious samples in collaborative machine learning improve the TPRs for all the sharing ap-
proaches. In the average-case scenario, only the Feature Extractor Sharing approach is advantageous 
for the use case of DGA detection. 

3.7.9 Collaboration Analysis 

In this subsection, our goal is to determine whether an increasing number of participants has a positive 
or negative effect on the classification performance of jointly trained classifiers. To this end, we inves-
tigate two scenarios. 

In the first scenario, we make use of the best-case scenario. Here, organizations want to use jointly 
trained classifiers to classify samples from their own networks most of the time. Thus, our goal is to 
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 determine whether the classification performance on those samples improves or deteriorates with an 
increasing number of participants. Thereby, organizations can decide whether or not it makes sense 
to use a collaboratively trained classifier for their own network. 

In the second scenario, the worst case, we want to determine whether an increasing collaboration 
improves the generalization capabilities of the classifiers and thus the classification performance on 
samples from external networks. 

We use the FPR as a proxy to determine the performance of the classifiers. In Table 4, we present the 
achieved FPR scores for the different collaborative machine learning approaches and classifier types 
separated by the number of participants. 

 

Table 4: FPRs of the best and worst case for all classifier types and collaborative machine learn-
ing approaches of D5.4 separated by number of participants 

For visibility, we omit the ACC and the TPR metrics, but most of the time a better or worse FPR corre-
lates with a better or worse ACC. In this evaluation, we are not primarily interested in comparing the 
achieved scores of the different approaches with the performance of the baseline presented at the top 
of the table. Rather, we are interested in whether an increasing cooperation improves or deteriorates 
the achieved performance. Thus, our colour code for the entries differs from Table 3. Here, we mark 
table entries green if they always improve with an increasing number of participants. When the ap-
proaches produce ‘continuously’ worse results, we colour them red. We do not colour any entries for 
the approaches for which the increases or decreases in classification performance are not consistent. 
In the following, we present the evaluation results for the best and worst cases in detail. 

Best Case 

Most of the collaborative approaches achieve (1) worse results compared to the baseline and (2) de-
teriorate in classification performance with increasing number of participants. This behaviour can be 
explained by the fact that the baseline's best-case scenario is the ideal training and classification set-
ting. There, the classifiers are assessed on data that comes from the same distribution as the samples 
used for training. No information of samples from the other organizations are incorporated in those 
classifiers. Thereby, the baseline classifiers are specialized in classifying samples that originate from 
the same network as the training samples used. Thus, it is not surprising that the baseline classifiers 
achieve almost the best results compared to the other approaches. The collaborative machine learning 
approaches, on the other hand, also incorporate information of samples from the other networks. 
Thereby, they are less specialized in classifying samples from a single network but are more generalised 
and, thus, achieve worse results compared to the baseline. The fact that these approaches achieve 
worse results with an increasing number of the participants can be explained similarly. The more par-
ticipants, the less the classifiers are specialized on samples of a single network. For example, Ensemble 
classification uses classifiers that are similar to the baseline classifiers. However, the more classifiers 
there are in an ensemble, the less influence a single classifier has on the final classification result. 
Therefore, in the best-case scenario, the classification performance drops. 
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 The only approach that improves with an increasing number of participants is Feature Extractor Shar-
ing. Moreover, for all the three classifier types, Feature Extractor Sharing achieves better FPRs than 
the baseline. This is because this approach creates models that are similar to the baseline but also 
incorporates additional information about samples from the other networks via feature extractors that 
are applied in parallel. Since the shared feature extractors are not retrained, information about sam-
ples from individual networks is very well preserved with this approach. In addition, the intelligence 
incorporated in the shared feature extractors is harnessed by this approach and leads to improvements 
even beyond the baseline. Note that although the differences in FPRs are rather small, our results are 
arguably significant because of the large number of evaluations done and the fact that this behaviour 
is observable for all the three types of classifiers. 

From these results, it can be seen that only Feature Extractor Sharing is beneficial in the best-case 
scenario, where organizations want to use collaborative machine learning classifiers to classify samples 
from their own network most of the time. 

Worst Case 

In this scenario, we evaluate whether an increasing number of participants improves the detection 
performance of jointly trained classifiers for samples that originate from external networks. Since we 
only have four different sources of benign data, the maximum number of participants in this scenario 
is three. 

The results obtained for the Ensemble classification deteriorate as the number of participants in-
creases for all the three classifiers. For Feature Extractor Sharing, the achieved FPRs improve with an 
increased number of participants for all the three classifier types. Consequently, in the worst-case sce-
nario, only the Feature Extractor Sharing improves in performance with an increasing number of par-
ticipants and achieves better scores than the baseline. 

 Direct Comparison with Approaches Developed in D5.6 (Global Models 
without Sharing Local Models) 

In this subsection, we compare the sharing approaches developed in this deliverable with the collabo-
rative machine learning approaches investigated in Deliverable D5.6 (Global Models without Sharing 
Local Models). In Deliverable D5.2 (Global Model based on Shared Anonymized Data), we also pro-
posed different sharing approaches. However, the focus of that deliverable was mainly on the com-
prehensive privacy study and the development of a context-less and feature-based approach to DGA 
multiclass classification, which can be used as an anonymizer for domain names in a collaborative ma-
chine learning scenario. Hence, we only compare the approaches of this deliverable with the ap-
proaches investigated in D5.6. Future work could compare the approaches for intelligence sharing of 
D5.2 with the collaborative machine learning approaches of D5.4 and D5.6. However, the approaches 
of D5.2 are less advanced compared to the approaches of D5.4 and D5.6. 

In addition to the 4,200 evaluations done for the evaluation of the different sharing approaches of this 
deliverable, we now present the results of the additional 9,240 evaluations done for the Deliverable 
D5.6. Our comprehensive study thus comprises a total of 13,440 evaluations.  

3.8.1 Collaborative Machine Learning Approaches Developed in D5.6 

In the following, we shortly repeat the sharing approaches which are taken from Deliverable D5.6, to 
which we compare the performance of the collaborative machine learning approaches investigated in 
this deliverable. 

Federated Learning 

Federated learning (FL) [25] is a technique to train a classifier collaboratively without sharing local data. 
First, a global model is initialized and shared among all the participants in the collaborative training. 
This global model can be either randomly initialized using standard initialization methods or pre-
trained using non-sensitive public data. In this work, we evaluate FL using three different initial global 
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 models, one that is randomly initialized (Random Model), and two pre-trained models. For pre-training 
a global model, we make use of malicious samples from DGArchive and benign domain names from 
the Tranco list [24]. This list contains a ranking of the most popular domain names, which is also pro-
tected against manipulation. One pre-trained model uses the top entries of the Tranco list for benign 
domain names, while the other model uses random samples. In the following, we refer to these models 
as Tranco Top and Tranco Random, respectively. After the global model is shared among all the par-
ticipants, an iterative training procedure is performed. The global model is trained locally by each or-
ganization, using their own private training data for each federation step. The weight updates to the 
global model in each federation step are then shared with all the other participants, so that everyone 
can now average the weight updates of the current step and add them to the global classifier's weights. 
Thereby, each party obtains the same global model which is then used within the next federation step. 
This iterative training process continues until the global model converges. The only data shared be-
tween the organizations are the model weight updates after each federation step and the initial global 
model. In this work, we investigate two federation approaches. In the first approach, we federate after 
each local model epoch (Federation after Model Epoch), while in the second approach we only feder-
ate once after all the local models have converged (Federation after Model Convergence).  

Here, we perform five repetitions using eleven organization combinations (when using four benign 
data sources, there are only eleven possible combinations of organizations for building a combined 
model), three initial global models (Tranco Top, Tranco Random, Random Model), two possibilities for 
federation (after Model Epoch, after Model Convergence), four test datasets, and three classifier mod-
els (5 · 11 · 3 · 2 · 4 · 3 = 3,960 evaluation passes). 

Teacher-Student 

The last examined sharing approach is based on a Teacher-Student (T/S) setup. Here, an organization 
queries trained classifiers of other organizations (teachers) in order to obtain labels for their own data. 
This labelled data is then used by the querying organization to train their own classifier (student). Using 
this approach, the teacher classifiers are not exposed to the organization that is training the student 
classifier. Thereby, white-box attacks against the privacy of an organization that provides the labelling 
service are not applicable. Usually more than one teacher is involved in the labelling process of a train-
ing sample, thus the individual labels or scores need to be combined. Similar to Ensemble classification, 
we examine two approaches: (1) majority voting on binary labels (Hard Labels) and (2) soft labelling by 
averaging confidence scores. When using the majority voting approach, a tie is resolved in the same 
way as in Ensemble classification. For this approach, no global shared model is trained, instead every 
party again derives an individual model, similarly to Feature Extractor Sharing. 

We train classifiers that are similar to the baseline classifiers as teacher models for this approach. Sim-
ilarly to Feature Extractor Sharing, here we need a training dataset that is labelled by the teachers and 
used for training a student classifier. Thus, in total we perform five repetitions using eleven possible 
organization combinations with four training datasets, two teacher result combination approaches 
(Hard and Soft labelling), four test datasets, and three classifier models (5 · 11 · 4 · 2 · 4 · 3 = 5,280 
evaluations). 

3.8.2 Comparative Evaluation 

In the following, we compare the sharing approaches developed in this deliverable with the collabora-
tive machine learning approaches investigated in Deliverable D5.6. For convenience, we display the 
results of both deliverables in summarized tables. 

Average Case 

In Table 5, we display the results of the average case, including all the classifier types and all the col-
laborative machine learning approaches. 
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Table 5: Results of the average case including all the classifier types and all the collaborative 
machine learning approaches 

Similarly to Ensemble classification and Feature extractor sharing, all the approaches of D5.6 (except 
for the FL setting Random Model - Model Convergence) achieve better TPRs than the baseline. Again, 
this is an expected outcome because the training datasets used by the individual organizations contain 
additional malicious labelled samples from which a collaboratively trained classifier can learn.  

The only exception is the FL setting Random Model - Model Convergence. In this setting, we use a 
randomly initialized model and federate the updates of the local models after they converged. While 
the NYU and the ResNet models are still functional and achieve only slightly worse classification scores, 
the TPR of the Endgame classifier falls from over 99.9% (baseline) to 55%. We reckon the reason is that 
the model updates from a randomly initialized model to a fully converged model vary significantly and 
the individual organizations optimize their models to different local optima. Averaging and applying all 
the model updates may result in a non-optimal global model. The Endgame model is far more affected 
by this compared to the CNN-based NYU and ResNet models. This is due to the fact that RNNs are 
processing inputs sequentially. Averaging the weight updates of fully converged models that are used 
to process sequential data can thus result in a non-functional global model. In the following, we ex-
clude the FL setting Random Model - Model Convergence from our study and mainly focus on the FPR 
for our assessment. 

All other FL scenarios lead to an improvement compared to the baseline results. Here, the Endgame 
model performs significantly better in the scenarios where a pre-trained initial global model was used. 
We assume that this is due to the fact that when using a pre-trained model, there are significantly 
fewer gradient updates towards local optima for the participants to optimize their models. Similarly to 
the FL setting Random Model - Model Convergence, this is an important property, especially for RNN-
based classifiers. In contrast, the ResNet model achieves the best results using the randomly initialized 
model. In all the FL settings, federating after each model epoch achieves better results than federating 
after model convergence. Compared to the baseline classifiers, the best FL approaches achieve on av-
erage a FPR reduction of 51.7%, 27.9%, and 44.3% for Endgame, NYU and ResNet, respectively. 

The T/S approach leads to worse results than the baseline. Comparing T/S to Ensemble classification, 
the T/S approach yields a lower FPR for all the three classifier types. Furthermore, with either ap-
proach, it makes little difference whether soft or hard labels are used. 

In summary, in the average-case scenario, only the Feature Extractor Sharing and FL approaches are 
advantageous for the use case of DGA detection. Using federation after model epoch leads to better 
results than federation after model convergence in FL. 

Best Case 

In Table 6, we display the FPRs of the best and worst case for all the classifier types and all the collab-
orative machine learning approaches separated by the number of participants. 
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Table 6: FPRs of the best and worst case for all the classifier types and all the collaborative 
machine learning approaches separated by the number of participants 

In contrast to Feature Extractor Sharing, all the collaborative machine learning approaches of D5.6 lead 
to worse results with an increasing number of participants and lead to worse results than the baseline. 
The reasons for this behaviour are already given in the best case analysis subsection for the collabora-
tive machine learning approaches of this deliverable. 

In summary, it can be seen from these results that only Feature Extractor Sharing is beneficial in the 
best-case scenario, where organizations want to use collaborative machine learning classifiers to clas-
sify samples from their own network most of the time. 

Worst Case 

In contrast to the results obtained for the Ensemble classification, which deteriorate as the number of 
participants increases for all the three classifiers, the FPRs for the T/S approach improve for the End-
game classifier. However, the achieved rates are worse than those of the baseline. 

For FL, the FPRs improve in all the settings and for all the classifiers, except for Endgame, when a ran-
domly initialized model is used. We assume that this is due to the same reasons given in the average 
case analysis subsection. The ResNet classifier, however, achieves the best results using a randomly 
initialized model. The achieved FPRs for Endgame and ResNet using federation after model epoch are 
significantly lower than for the approaches that make use of federation after model convergence. For 
the NYU classifier, no significant difference can be measured for the various models. Comparing the 
results with Feature Extractor sharing, the achieved rates by Feature Extractor sharing are significantly 
worse than the ones achieved by Endgame and ResNet using FL with federation after model epoch. 
For NYU, the rates are comparable to those seen in the FL settings. 

In summary, in the worst-case scenario, only the Feature Extractor Sharing and FL approaches improve 
in performance with an increasing number of participants and achieve better scores than the baseline. 
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 FL with federation after model epoch achieves the best results for Endgame and ResNet and, thus, 
generalises best to different networks. When comparing the different types of classifiers, Endgame 
and ResNet are better suited for FL than NYU. For RNN-based classifiers, pre-trained initial models 
should be used. 

 Conclusion 

We performed a comprehensive study of collaborative machine learning for the real-world use case of 
DGA detection. Thereby, we identified advantageous and disadvantageous approaches for different 
types of classifiers and showed that collaborative machine learning can lead to a reduction in FPR by 
up to 51.7%. Additionally, we showed that the usage of publicly available data is insufficient for DGA 
detection on private data. This shows the need for privacy-preserving collaborative machine learning 
approaches. In two real-world cases, we have shown that wider participation in collaborative machine 
learning does not always lead to better classification results. In fact, we only assess Feature Extractor 
Sharing and FL of the four examined collaborative machine learning approaches as beneficial for DGA 
detection. Feature Extractor Sharing should be used if a party wants to classify samples that come from 
their own network most of the time. FL on the other hand generalizes best to unknown networks. The 
four examined collaborative machine learning variants based on T/S learning and Ensemble classifica-
tion lead to worse results than the baseline. 

 Privacy Analysis 

As any kind of sharing activity may generate an attack surface that threatens the privacy of the shared 
object, we investigate the privacy implications of the sharing approaches in the DGA detection use 
case. In the preliminary version of this Deliverable (D5.3), the Machine Learning privacy attack land-
scape was introduced in a brief but formal overview. We identify the Data Inference class as the rele-
vant attack class for the sharing scenario in this deliverable, with a focus on the Model Inversion and 
Membership Inference attacks. At this point, a thorough discussion on relevant privacy-threatening 
inference attacks against the beneficial sharing approaches shall complement our sharing scenario 
evaluation. 

As Feature Extractor Sharing is the only beneficial DGA sharing approach in this Deliverable, we discuss 
only its privacy aspects. To recapitulate: In this approach, each party shares a partial model (front part 
/ feature extractor), while the final models with global intelligence are later personalized, as each party 
trains its own decision layers (rear part) locally. 

Since partial models are shared openly, an adversary is granted white-box access. With such, they have 
access to the models' parameters, which are directly influenced by the data in the learning process. 
Further, the adversary also has access to the gradient computation on the model function. We trans-
ferred the privacy discussion about this sharing approach from Deliverable D5.2 to this Deliverable 
(D5.4), as the sharing approach is better suited here. While in the sharing scenario in D5.2 each party 
had to share its data after passing it through a public feature extractor, this sharing approach only 
requires sharing the locally trained feature extraction models, but no data. This shrinks the attack sur-
face and makes the application of deep learning feature extractors more suitable in this scenario than 
in the scenario described by D5.2. We discuss the threat of both potentially applicable privacy-threat-
ening attacks, Model Inversion and Membership Inference, in the following. 

3.10.1 Model Inversion 

In a white-box setting, gradient-based Model Inversion attacks [26, 27] may be deployed against the 
model function. For a given model output, these attacks aim to find an input close to the unknown 
original input that created the known model output. This is achieved by an iterative process that opti-
mizes the input to the model function to produce the target output. The optimization process is guided 
by a gradient ascent or descent on the model function's input with respect to some loss comparing 
target output and model function output. These gradient-based attacks are also applicable to partial 
models. Due to stochasticity in the gradient descent optimization process, this attack, similar to any 
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 other machine learning task, does not have a closed form solution and is sensitive to initialization. 
Therefore, the attack will produce a reconstructed input that produces an output close to that of the 
target, while the closeness of the original input and the reconstruction input is not guaranteed. Among 
others, the efficacy of the attack is therefore highly dependent on the learning task, the optimization's 
hyperparameters and the model's input space complexity. 

In the following, we provide reasons why we consider Model Inversion to be a minor threat in the 
Feature Extractor Sharing scenario: 

1. The partial models which are disclosed in the sharing process are trained independently from each 
other in terms of both training data and training party. This does not “fit in” any threat models derived 
from split learning [28], where consecutive vertical splits of a whole model are trained in succession 
by different parties, yet on the same data. 

2. Classic Model Inversion attacks do not perform well in practice, especially if the targeted model is 
highly complex (in number of layers or weights) [29]. The non-trivial architecture of our models, given 
by either convolution or recurrent operations or residual connections, is likely too complex for such an 
attack to perform well. 

3. The embedding layer used as the first layer in all the three model architectures is non-differentiable, 
and, thus, the gradient optimization may back-propagate up to the output of that embedding layer at 
most. It is possible to reverse the embedding layer in each step, utilizing an inverse discrete mapping. 
We view this as an additional obstacle for the attack, as the optimization process cannot traverse the 
solution space in a continuous manner. 

4. The last and most valuable argument is the following: The goal of a Model Inversion attack is to 
reconstruct an input for a known output. The sharing parties only disclose their feature extractor 
model but never disclose any intermediate outputs of their model, and, as a result, the attacking party 
has no starting point for the attack. Reconstructing true inputs requires the knowledge of a set of the 
targeted party's feature vectors, which are however not shared in this approach. 

3.10.2 Membership Inference 

The classic Membership Inference attack is defined for complete classifier models, i.e., with a final 
softmax output. Theoretically, the attack setup, as described in [30], could be redefined for the case 
of a partial model. However, the semantics of an intermediate layer output are not clearly defined. 
The original attack builds on the premise that every model will be biased to show a higher confidence 
for training samples than for samples outside of the training set. Intermediate layer outputs do not 
necessarily follow such a pattern. Although the layer activations could be analysed with a clustering 
approach, we do not expect a major privacy threat from such an attack on a partial model because the 
intermediate layer weights are not directly optimized to separate certain groups of data (class labels). 
To the best of our knowledge such research has, however, not been conducted yet. 

 

4 Application Profiling 

We developed multiple approaches for application profiling, which are described in SAPPAN D3.5. For 
those, we distinguish between two use cases, namely, identification and classification. For the identi-
fication case, the goal is to identify – based on network traffic – which applications run on a host. For 
this, we developed a rule-based as well as a process mining-based approaches. The goal of the classi-
fication case is to determine whether an application behaves as expected, i.e., to detect anomalous 
behaviour which may be caused by malicious activities. However, for application profiling, we focused 
on the local use cases considered in WP3. While such classical collaboration approaches as teacher-
student or federated learning are applicable to machine learning methods, they are not so relevant for 
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 our rule-based and process mining-based methods. We also experimented with deep learning tech-
niques for application profiling, but the other, simpler, approaches showed more promising results. 
Hence, when it comes to application profiling in the context of WP5, we only continued with experi-
ments based on shared data, which are covered in D5.2. 

 

5 Deriving Low-Dimensional Embeddings of Computer Processes 

 Introduction 

This section presents research into the feasibility of using NLP-style embeddings to derive parent-child 
relationships between executable processes based on recordings of their behaviour within (numerous) 
computer systems. This work is related to the Process Launch Distribution model (further referred to 
as PLD) described in D5.3. Since popular methods for constructing embeddings in NLP (such as [37, 
35]) can be carried out in the federated learning fashion ([40, 41]), the use of those brings us the ben-
efits of sharing in the training process. 

The previously described PLD mechanism is designed to capture the distribution of process launch 
events in endpoints and to enable the detection of anomalous events via a statistical distribution with 
thresholds model. The underlying assumptions in PLD are that (i) benign events in a training set are 
much more frequent than events connected with attacks, and (ii) process launch events where two 
common (popular) processes are used in anomalous ways are sufficiently reliable signs of attacks. PLD 
defines a score function that reflects how anomalous a given process launch event is: the closer to zero 
the PLD score is, the more anomalous the process launch event is, and thus the more suspicious it is 
from a security intuition point of view. 

With respect to the previously studied PLD model, the research described in this Section is designed 
to determine the following: 

1. Whether an alternative way to encode co-occurrence data of processes can be useful for PLD-

like approaches for reasons including (1) simplified data storage and transfer routines, (2) mit-

igated concerns about the need to interchange plain data values and (3) applicability of recent 

advances in the field of federated learning [31, 32] that could positively address customers’ 

privacy concerns. 

2. Whether the use of process embeddings for encoding semantic similarity between their con-

texts is viable. For the case of PLD, this implies that every process can be described by two 

embedding vectors representing a process as either a parent or a child (the context for a par-

ent process embedding is defined by its child processes and vice versa). For the sake of sim-

plicity in our initial experiments, we ultimately suggest concatenating embedding vectors to 

represent each process. 

The latter point is very important for further use cases, since intrinsic properties of embeddings con-
tribute to solving a foundational challenge in applying machine learning in the cybersecurity domain: 
representing unordered categorical feature values in a dense, low-dimensional form instead of a tra-
ditional one-hot encoding schema. Additionally, embeddings increase machine learning model effi-
ciency and simplicity (from resource consumption and complexity points of view) and can be used by 
other cybersecurity-relevant models (where downstream models that rely on features of categorical 
entities can utilize already pretrained embeddings [33]). 

 Global Vectors (a.k.a. GloVe) approach to build word embeddings 

This study utilizes the same data that was used in the previous PLD research (detailed in D3.4 and 
D5.3). The data can be considered a co-occurrence matrix of (parent, child) process pairs. Processes 
are represented by their file names (e.g., 'cmd.exe', 'svchost.exe', 'iexplore.exe'). This representation 



 

Page 26 of 35 

 SAPPAN – Sharing and Automation for Privacy Preserving Attack Neutralization  

WP5 

D5.4 - Global model based on shared local models, final version 

 Alexey Kirichenko, 30.10.2021 

 perfectly matches the matrix form needed for building word embeddings in the Natural Language Pro-
cessing (NLP) domain using popular approaches based on matrix factorization (e.g., Latent Semantic 
Analysis) and the Global Vectors representation model (known as GloVe [1]). Other shallow window-
based methods (skip-gram and continuous bag-of-words methods also known as Word2vec) might also 
be considered relevant since those are well-documented and straightforward, and existing high-quality 
implementations are widely available (for example, Python implementations are available in the pop-
ular package Gensim [34]). 

The main advantage of the GloVe model for our setting is that it captures global corpus statistics di-
rectly and can be considered a matrix factorization approach that while trying to approximate co-oc-
currence matrix also trains semantic-aware embeddings for parent and child processes. This is the key 
reason why GloVe was selected for this feasibility study. 

A detailed description of the method is available in [35]. For the purposes of this report, the GloVe cost 
function will be described in detail: 

𝐽 = ∑ 𝑓(𝑋𝑖,𝑗)(𝑤𝑖
𝑇𝑤𝑗̃ + 𝑏𝑖 + 𝑏̃𝑗 − 𝑙𝑜𝑔𝑋𝑖,𝑗)2

𝑉

𝑖,𝑗

 

𝑉 is the vocabulary size (the number of processes in this study is 1,000), function 𝑓 is a weighting 
function of the co-occurrence matrix element 𝑋𝑖,𝑗 that aims – by introducing weights – to avoid treating 

frequent and rare co-occurrence values equally. As it can be seen, the cost function aims to train model 
parameters that represent embedding vectors 𝑤 and bias terms 𝑏. For every categorical entity 𝑖 (word 
in the original paper or process name in our study), the approach learns a central embedding vector 
𝑤𝑖 (in our convention – an embedding that represents the parent process with respect to its child 
processes or, simply put, parent process embedding vector), context embedding vector 𝑤𝑖̃ (corre-

spondingly, child process embedding vector) and two bias terms 𝑏𝑖 and 𝑏̃𝑖. 

According to the cost formula’s structure, to get the co-occurrence matrix’s element 𝑋𝑖,𝑗  from the 

model, the following expression is used: 

𝑋𝑖,𝑗 = 𝑒(𝑤𝑖
𝑇𝑤𝑗̃+𝑏𝑖+𝑏̃𝑗) 

To identify entities close to a given entity, we can simply apply a cosine similarity measure to their 
embeddings. To this end, for every type of embedding vector 𝑤 (i.e., parent, child, combined) a dis-
tance matrix can be computed, which is then used to select a defined number of closest embeddings 
(5 by default in our experiments). The learned bias values 𝑏 are not involved in this similarity check. 

 Used data 

The data collected for the experiments (described in D5.3) represents parent - child interactions of the 
1000 most common processes that were observed in the original PLD dataset. The original PLD dataset 
represents a three-week collection of new process events from a few hundred thousand endpoints 
running Microsoft Windows. This dataset consists of parent-child process counters that were collected 
and submitted to the security backend by the sensor software running on each monitored endpoint. 
Every such a submission is a list of tuples of file names of parent and child processes and a counter of 
the respective new process events.  
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Figure 5. An excerpt of the available PLD data that were used for training 

The resulting data consists of 1,000,000 co-occurrence values for the process pairs and is sparse – 
approximately 1% of all the co-occurrence values are non-zero. Figure 5 illustrates a portion of the 
data in a co-occurrence matrix form, where the rows and columns represent parent and child process 
names respectively and the values denote the number of times each parent – child pair was observed. 
In a process launch event, a launched process is the child process, and a launching process is the parent 
process. 

 Training process 

The embeddings construction (training) was performed using CPU-only TensorFlow 2.6.0 on a Dell Pre-
cision 5530 running Microsoft Windows 10 Enterprise. The system’s specifications were as follows: 

• Processor: Intel(R) Core (TM) i9-8950HK CPU @ 2.90GHz 

• Installed RAM: 32.0 GB (31.7 GB usable) 

• System type: 64-bit operating system, x64-based processor 

For the sake of simplicity, we selected the top 1,000 most active processes from the original dataset. 

For the given training set size, it was enough to limit the number of training iterations to 100, using a 

batch size of 1024.  

 Evaluation scenario 1: From parent and child embeddings to co-occur-
rence counter values 

The model’s capability to reconstruct co-occurrence counter values is an inherent property of the 
Global Vectors model stipulated by the definition of the training objective (minimization of the cost 
function) it relies on. Our empirical checks of selected examples, relevant in the cybersecurity domain, 
indicate that the model tends to make correct approximations of co-occurrence information. This is 
not the case in general though; we believe that this issue can be addressed by a trade-off between two 
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 key parameters that should be defined in a use case-specific manner: embedding size and model ac-
curacy. 

 

(Parent, Child) process pair Original cooccurrence Predicted cooccurrence 

(powershell.exe, OUTLOOK.EXE) 34166.0 41527.18 

(OUTLOOK.EXE, powershell.exe) 1.0 0.61 

(Teams.exe, Teams.exe) 981989504.0 24360053.0 

(WINWORD.EXE, powershell.exe) 1.0 0.93 

(EXCEL.EXE, powershell.exe) 19.0 19.45 

(msedge.exe, powershell.exe) 0.0 -0.15 

Table 7. Examples of the model’s predictions (embedding size is 64). 

Table 7 presents some examples of the model’s predictions of co-occurrence counters. The first col-
umn represents the validated parent-child process pair (per se, it defines the co-occurrence value in 
the training data matrix). Original occurrences are the values from the training data. Predicted co-
occurrences present the model’s predictions of the co-occurrence values. Thus, the differences of the 
original and predicted values can be interpreted as the model’s errors for parent-child pairs. It is nec-
essary to emphasize that, for the PLD approach, the larger the original number, the lower the concerns 
of the significance of prediction errors. In a realistic production setting, we consider additional pre-
processing of the training data matrix in order to avoid the overly high counter values; for example, 
they can be scaled, normalized or substituted by anomaly category values. 

 

Figure 6. Learning curves for different sizes of embeddings 

As can be seen from Figure 6, the loss, and respectively, the model’s ability to approximate co-occur-
rence information, depends on the selected size of embeddings. This is an ordinary fact adjacent with 
the concept of overfitting, since models with a larger number of parameters memorize better. 

 Evaluation scenario 2: From embeddings to similar process names 

A trained model can be used to calculate cosine similarity values for any pair of items in the dataset, 
and thus build a distance matrix that encodes all the information necessary to find closest embeddings 
and, respectively, closest process names. 

Process name Compared em-
beddings 

Five closest processes (cosine similarity) 
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 OUTLOOK.EXE Parent POWERPNT.EXE (0.98), WINWORD.EXE (0.91), EXCEL.EXE 
(0.88), sihost.exe (0.72), iexplore.exe (0.72) 

Child EXCEL.EXE (0.96), WINWORD.EXE (0.95), POWERPNT.EXE 
(0.9), iexplore.exe (0.9), notepad.exe (0.87) 

Combined WINWORD.EXE (0.94), EXCEL.EXE (0.93), POWERPNT.EXE 
(0.93), iexplore.exe (0.8), AcroRd32.exe (0.79) 

chrome.exe Parent msedge.exe (0.89), brave.exe (0.66), rundll32.exe (0.66), 
iexplore.exe (0.65), explorer.exe (0.65) 

Child msedge.exe (0.94), iexplore.exe (0.89), firefox.exe (0.85), 
WerFault.exe (0.83), notepad.exe (0.83) 

Combined msedge.exe (0.9), iexplore.exe (0.78), EXCEL.EXE (0.72), 
firefox.exe (0.72), brave.exe (0.72) 

WhatsApp.exe Parent Skype.exe (0.8), brave.exe (0.75), slack.exe (0.74), Rain-
bow.exe (0.7), Rainmeter.exe (0.69) 

Child slack.exe (0.92), Skype.exe (0.83), AppVLP.exe (0.80), 
RAVCpl64.exe (0.76), wfcrun32.exe (0.75) 

Combined slack.exe (0.82), Skype.exe (0.8), Atlassian Companion.exe 
(0.69), sihost.exe (0.65), Teams.exe (0.64) 

java.exe Parent python.exe (0.84), cmd.exe (0.83), powershell.exe (0.81), 
Code.exe (0.78), services.exe (0.76) 

Child node.exe (0.66), perl.exe (0.64), python.exe (0.63), sc.exe 
(0.63), net.exe (0.61) 

Combined cmd.exe (0.66), python.exe (0.65), powershell.exe (0.62), 
javaw.exe (0.61), perl.exe (0.6) 

Table 8. Examples of closest process names (embedding size is 64) 

Table 8 presents similarity values for the most similar processes for a selection of process names. 
Sparse context data, such as child and parent process co-occurrence values, help define groups of se-
mantically similar applications (under the assumption that we trust the names of the executable files). 
Table 8 illustrates that the learned embeddings captured similarities between office applications, 
browsers, messengers, and scripting / programming language interpreters. This was not the case gen-
erally, though, and thus some observations should be manually checked by human experts and data 
sources. From our perspective, the most promising approach is to rely on a combined embedding rep-
resentation (concatenation of parent and child embedding vectors). 
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Figure 7. Top 20 parent and child processes for some browser process names 

Figure 7 visualizes original training data (co-occurrence counters) for some of the process names that 
are close from the embedding similarity search’s perspective. 

 

Figure 8. Combined embeddings for two process names that are close to each other 

Figure 8 presents an example of two combined embeddings for semantically similar process names. 
The embeddings size is 64. After concatenating them we get two 128 dimensional vectors where the 
left side part is the parent embedding vector and the right one is the child embedding vector. 

 Conclusions and future directions 

The feasibility study described in this section demonstrated that natural language processing ap-
proaches for building word embedding models can be utilized in the cybersecurity domain to create 
embeddings for processes, which traditionally required one-hot encoding transformations. The previ-
ously discussed PLD model is well aligned with the GloVe approach, and, in fact, it is possible to sub-
stitute co-occurrence counter data with a set of process-name-specific embedding vectors and biases 
that can be used to encode co-occurrence information on the endpoint in a more private manner (en-
abling privacy-preserving sharing).  

Availability of embeddings makes it possible to consider advanced scenarios of: 
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 • transmitting embedding vectors to endpoints via cloud lookups (instead of via traditional de-
livery mechanisms such as software or settings updates); 

• using embeddings for context-specific similarity searches in other relevant systems; 

• using embeddings to present process names and other types of high cardinality categorical 
entities for solving downstream problems in a machine learning setting. 

Future research directions include additional studies addressing (1) ways of representing the data in a 
counter-unaware form (for example with categories), (2) possible approaches to take detailed contex-
tual data for PLD, for example from process trees, (3) other relevant categorical entity types like set-
tings (Registry keys), folders (file locations), network port numbers; (4) other relevant contexts for 
process entities that define their operations with file system, network, users, etc.; (5) efficient con-
struction of relevant embeddings in the federated learning manner. 

 

6 Towards Detecting Anomalous Registry Writes 

 Motivation and Introduction 

A telltale sign of a suspicious Windows executable is its anomalous behaviour with respect to the Win-
dows Registry. For example, malicious executables in many cases try to access or even overwrite criti-
cal passwords stored in the Windows Registry. Additionally, a typical Windows Registry contains an 
enormous number of keys, so a rule-driven approach is likely to miss many edge events or produce a 
lot of noise. 

A Windows Registry write event contains three main attributes: 

 1.  The key being accessed 

 2.  The executable accessing the key 

 3.  The value being written into the key 

If any one of these three features is sufficiently suspicious, we have a good reason for raising an alert.  
However, for example, a (key, executable) pair may be suspicious without either individual component 
of the pair raising concerns (or just known to be malicious). As such, subtle ML methods may be able 
to detect suspicious Registry write events. 

Aside from the lone reference [36], there is little academic literature about detecting anomalous be-
havior with respect to Windows Registry writes or reads. Moreover, the anomaly detector in [36] es-
sentially one-hot encodes Registry keys, causing an explosion in dimensionality. The authors deal with 
the large dimensionality of the problem by using a simple Dirichlet-estimator based anomaly detector, 
which predicts when a (key, executable) pair is anomalous. Given that [36] is currently nearly two dec-
ades old and that the Machine Learning domain has seen rapid advances in the recent past, we believe 
that the topic is worth revisiting and amenable to the application of the embeddings techniques intro-
duced in Section 5. 

 Normalizing Registry Keys 

To construct an anomaly detector on Registry write events, we must first do a fair bit of pre-processing 
to the Registry key data. To illustrate the need for normalizing the Registry keys, consider the following 
example registry key: 

\\REGISTRY\\USER\\S-1-5-21-304820375-743328050-817656539-1131\\Soft-

ware\\Microsoft\\Windows\\CurrentVersion\\Explorer\\UserAssist\\{F4E57C4B-

2036-45F0-A9AB-443BCFE33D9F} 
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 The SID beginning with S-1-5-21 and the UUID beginning with F4E57C4B contain many random 
characters but very little information, and there can be millions of such identifiers throughout the da-
tabase. As such, our task is made easier by simply replacing all SID’s with some pre-determined string, 
say sid_string, and similarly for the UUID’s. 

More pre-processing is done to the key to remove additional sources of randomness, punctuation is 
eliminated, and the key is split along the backslashes into an array of strings. After normalization, the 
above example key becomes: 

[registry, user, sid_string, software, microsoft, windows, currentversion, 

explorer, userassist, uid] 

 Vectorizing Registry Keys 

Our goal is to vectorize such arrays in order to obtain a numerical representation of Registry keys. It is 
possible to use a traditional CountVectorizer or TfIDFVectorizer to do this, but there are two key prob-
lems with such an approach: 

1. The dimensionality of the vectors is still enormous, even after key normalization. 

2. The context of each token is lost. That is, such simple models do not take into account which tokens 
typically appear next to each other, which is valuable information. 

Using a Word2vec model [37, 38] fixes both of these problems, as it allows us to set the dimension to 
whatever we wish, and it takes word order and context into account when constructing embedding 
vectors. 

To give more details about the embedding vectors construction, we train a Word2vec model on the 
‘sentences’ given by the normalized Registry keys. This yields embedding vectors for each individual 
token, which are then summed to get an embedding vector for the entire registry key. This particular 
model was trained with one day’s worth of data from one organization, which contained 700,000,000 
Registry write events and 780,000 unique normalized Registry keys. 

We can validate the Word2vec embedding vectors of Registry keys by selecting a few keys at random 
and computing the most similar keys with respect to cosine similarity. With the embedding dimension 
set to 𝑑 =  100, we obtain the results as depicted in Figures 9 and 10. In both examples, the top row 
is the query Registry key selected, and the rows below it reflect the most similar non-identical keys. In 
both examples, we see that cosine similarity between vectorized Registry keys reflects real semantic 
similarity between the keys. 

 

Figure 9: Most similar Registry keys to a given random key 
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Figure 10: Most similar registry keys to a given random key 

 Discussion and Future Work 

The work we have done towards detecting anomalous Registry writes is still in progress, and we hope 
to build on what we have so far to deliver a working anomaly detector. The success of using Word2vec 
to embed Registry keys in a low-dimensional Euclidean space is a promising start, and the next step 
will be to link such embedding vectors to the write events as a whole. 

 

7 Conclusion 

This deliverable continues and extends the discussion started in SAPPAN D5.3 (the first version of the 
deliverable produced by SAPPAN Task 5.2), where we presented the initial approaches and experi-
mental results for model sharing in the settings of domain generation algorithms (DGA) detection, 
application profiling, and anomalous behaviour detection in endpoints. 

The focus in this document was on: the evaluation and the privacy analysis of the proposed DGA de-
tection methods; a method, amenable to federated learning techniques, for deriving low-dimen-
sional embeddings of computer processes, which can be used by and can improve the performance 
of other cybersecurity-relevant models, in particular, the models presented in D5.3 for detection of 
anomalous process launch and process access events in endpoints; another potential use case for the 
embeddings approach, where the goal is to detect security-related anomalous Windows Registry 
write events. 

As we find the presented methods and techniques promising for the practical use in real-world attack 
detection solutions, a number of further experiments with those are in the plans and we expect to 
report on the results in the SAPPAN WP6 deliverables. 
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