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 Executive Summary 
This initial deliverable is one of two deliverables for the Task T5.3 Federated Learning 
of a global model without sharing local models. Its goal is to learn a global model, 
similarly as of the tasks T5.1 and T5.2, but using a different sharing approach. There-
fore, the deliverables D5.1, D5.3, and D5.5 have some overlaps, especially with re-
spect to background, motivation, and the context within SAPPAN. In general, WP5 
focuses on sharing and federation for cyber threat detection and response and this 
task is one of three tasks focusing on collaborative learning. In this initial version of the 
deliverable, we present the showcases that we work on in the context of building global 
detection models. We present the different showcases and sharing scenarios, includ-
ing planned experiments and initial results. The showcases are similar to the ones 
developed in WP3, namely Domain Generation Algorithm (DGA) detection, application 
and host profiling, and anomaly detection. This task does not require anonymization of 
data or models, because none of this is shared. Instead, we make use of federated 
learning and a teacher-student approach. 
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 1 Introduction 

This deliverable for Task T5.3 has similar goals as the tasks T5.1 and T5.2, hence, a 
large part of its motivation and context is similar to the other tasks. In SAPPAN, one 
goal is to build a sharing platform that can be used for privacy-preserving sharing of 
intrusion detection data, detection models, and response handling information. This 
sharing mechanism is intended to improve the local capabilities of each participating 
organization by collaboration. In WP3, one of the tasks is to develop local detection 
and response mechanisms. In WP5, we want to utilize these mechanisms on the global 
level to improve them using different sharing mechanisms. 

This deliverable focuses on building global detection models without sharing complete 
local models or private data. This limits the approaches to either share potentially less 
privacy-critical model updates (federated learning), or to provide classification as-a-
service of a global dataset without revealing the local models (teacher-student ap-
proach). Compared to the Tasks T5.1 and T5.2, this approach is the most privacy pre-
serving one. However, when no data or complete models can be shared, this heavily 
limits the approaches for learning global models. The goal is, to still make use of col-
laboration to improve the local detection mechanisms. Throughout the first three tasks 
of WP5 we focus on the showcases which we developed local detection mechanisms 
for, as well as some additional ones. In this task, we mainly look at the showcases for 
DGA detection and application profiling, because the approaches are not applicable to 
all showcases. We will make use of federated learning, which only requires to share 
model updates instead of complete models, as well as a teacher-student approach, 
which only queries local models without revealing them or the used training data. For 
some of the experiments we already have initial results. The final results will be pre-
sented in the second version of this deliverable. 

This document is structured as follows. First, we briefly outline the context of this task 
in the overall scheme of this project. Next, we describe the general idea of this task in 
more detail, discuss privacy for machine learning models, and afterwards describe the 
different showcases including different approaches for building global detection mod-
els. First, we present the showcase of DGA detection including two sharing scenarios 
and first results of our experiments. Next, we briefly outline how the same approaches 
can be applied to application profiling. Finally, we briefly conclude the first version of 
this deliverable. 
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 2 SAPPAN Context 

The context for building a global model in SAPPAN is similar for the first three tasks in 
WP5. Hence, the following paragraph can also be found in the Deliverables D5.1 and 
D5.3. 

 

Figure 1: SAPPAN scheme regarding local and global response and recovery. 

The overall scheme for sharing, detection, and response in SAPPAN is shown in Fig-

ure 1. The top half of the scheme describes the detection components, and the bottom 
half the response components, while the left half corresponds to the local level, and 
the right half to the global level. The goal of WP5 is to implement the global level with 
respect to sharing of data and models, building global models for detection, sharing of 
response and recovery information, as well as visualization. The tasks T5.1, T5.2, and 
T5.3 include the development of global models for detection based on different ap-
proaches. The general idea is to utilize data and models which are developed in Task 
T3.3 on the local level by sharing them among multiple organizations to build global 
detection models. The goal is to end up with global detection mechanisms that are 
superior to the local ones. One problem with respect to sharing is of course privacy, 
which is tackled by the different approaches that are developed in the tasks T5.1, T5.2, 
and T5.3. The approaches range from sharing of anonymized data, over sharing only 
pre-trained models, to sharing neither of them. The goal is to apply these techniques 
to similar showcases as described in WP3 to build global detection models utilizing 
different levels of privacy. For that, we will use anonymization techniques developed 
in Task T3.4 based on the privacy requirements described in Task T2.2. 
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 3 Federated Learning of a Global Model without Sharing Local 
Models 

The goal of this task is to build a global model without sharing either anonymized data 
or local models. This is the most challenging task compared to T5.1 and T5.2 because 
less information is available on the global view. On the other hand, this task includes 
the most privacy preserving approaches because the least amount of information is 
shared. The two principles to still create a global model in this task are federated learn-
ing, where only updates to a model are shared, and the teacher-student approach, 
where the local models are queried using a public dataset. 

 Privacy 

The following briefly describes the landscape of privacy attacks against machine learn-
ing, followed by a short discussion about which of these attacks are relevant to this 
deliverable. The former part will be the same in all three deliverables D5.1, D5.3 and 
D5.5. Unwillingly disclosing private or sensitive information is in most cases inherent 
to the useful distribution of knowledge, independent of whether the knowledge is 
shared in the form of a data set or a decision model. Depending on the sharing scenario 
and on the form of knowledge, different attacks become feasible. The so-called Infer-
ence attacks attempt to deduce sensitive information about data sets or models from 
their statistical characteristics and how the sets and models are processed. These in-
ference attacks are, among others, listed in Figure 2 which describes the attack land-
scape in the context of machine learning classifiers. We consider the following nota-
tion: The parameters Φ of a K-discriminative classifier F with domain X and codomain 
Y={1, ..., K} are trained on a labeled data set D={(xi,yi)i=1,...,d} as a subset of  X × Y 

drawn from unknown distribution D ~ D. Trained model F represents a function that 

computes probabilities of class membership as follows: 

 

or just the predicted class as such: 
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Figure 2: Privacy attack landscape in machine learning. 

When restricting the view to the sharing scenarios in this deliverable, which is the in-
cremental sharing of weight updates (federated learning) or prediction APIs (teacher-
student approach) for classification models, the relevant attack classes are both Data 
and Model Inference attacks [27, 26, 25, 24] as well as Poisoning [30]. The emphasis 
lies on Membership Inference and Model Extraction attacks. Attacks of the latter group 
aim at extracting the functionality of the target model through extensive querying, as in 
these sharing scenarios models are hidden behind prediction APIs. In the case of fed-
erated learning, a variant of the Model Inversion or Poisoning attack may be executed 
by a participant by him deviating from the federated learning protocol and releasing 
wrongful information for the iterative gradient updates. Thereby, the model learning 
process can be negatively influenced. The other attack classes, i.e., Adversarial Ex-
amples [29] and Sidechannel attacks [28], are not of relevance for this Deliverable. 
Anonymization techniques, privacy-preserving training algorithms and other measures 
allow to shrink the attack surface or the feasibility of an attack. A privacy evaluation is 
demonstrated on the DGA showcase: For each DGA sharing scenario, we evaluate 
the privacy leakage by measuring the success of the relevant attacks. 

 Domain Generation Algorithm (DGA) Detection 

We use the Domain Generation Algorithm (DGA) Detection use case to analyze and 
compare the benefit of private data sharing within the deliverables D5.1 (global model 
based on shared anonymized data), D5.3 (global model based on shared local mod-
els), and D5.5 (global model without sharing local models). In addition, we investigate 
the privacy implications caused by data sharing for this use case in all three delivera-
bles.  

Through this commonality, the three deliverables share the same texts for sections that 
include general information such as DGA detection background, state-of-the-art clas-
sifiers, or parts of the evaluation setup. However, sections that depend on the different 
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 sharing scenarios, such as the actual evaluation and the privacy study, are listed indi-
vidually for each deliverable. 

3.2.1 Background 

We presented DGA detection in D3.4 (Algorithms for Analysis of Cybersecurity Data) 
in detail. As a reminder, we briefly discuss the most important aspects here. 

Modern botnets rely on DGAs to establish a connection to their command and control 
(C2) server. In contrast to the usage of single fixed IP-addresses or fixed domain 
names, the communication attempt of DGA-based malware is harder to block as they 
generate a vast amount of algorithmically generated domains (AGDs). The botnet 
herder is aware of the generation scheme and thus able to register a small subset of 
the generated domains in advance. The bots, however, query all generated AGDs, 
trying to obtain the valid IP-address for their C2 server. As most queried domains are 
not registered, the queries result in non-existent domain (NXD) responses. Only the 
domains that are registered by the botnet herder in advance resolve successfully to a 
valid IP-address to their C2 server. 

The occurring NXDs within a network that are caused by the non-resolvable queries 
can be analyzed in order to detect DGA activities and thereby to take appropriate coun-
termeasures even before the bots can be commanded to partake in any malicious ac-
tion. This detection is, however, not trivial, since NXDs can also be the product of typing 
errors, misconfigured or outdated software, or the intentional misuse of the DNS e.g. 
by antivirus software. In the following, we refer to this detection in which we separate 
benign from malicious domain names as the DGA binary classification task. 

In addition to this binary classification task, it is useful to not only detect malicious 
network activities but also to attribute the malicious AGDs to the specific DGAs that 
generated the domain names. This enables the malware family used to be narrowed 
down and targeted remediation measures to be taken. In the following, we refer to this 
classification as the DGA multiclass classification task. 

In the past, several approaches have been proposed to detect DGA activities within 
networks. These approaches can be split into two groups: contextless and context-
aware approaches. In SAPPAN, we focus on contextless approaches (e.g. [1, 2, 3, 4, 
5, 6]), as they entirely rely on information that can be extracted from a single domain 
name for classification. Thereby, they are less resource intensive and less privacy in-
vasive than context-aware approaches (e.g. [7, 8, 9, 10, 11, 12]) that depend on the 
extensive tracking of DNS traffic. Even though the classification of the contextless ap-
proaches relies solely on the domain name, they are able to compete with the context-
aware approaches and achieve state-of-the-art performance [1, 2, 4, 5, 6]. 

A variety of different types of machine learning techniques have been proposed for the 
classification of domain names which can be divided into two groups: feature-based 
classifiers (e.g. [2, 7]) and deep learning (featureless) classifiers (e.g. [1, 4, 5, 6]). While 
the deep learning classifiers outperform the feature-based approaches in terms of clas-
sification performance [4, 5, 13, 14, 15], their predictions cannot be explained easily. 
For example, the predictions of a decision tree can easily be traced back to the indi-
vidual features used to classify a domain name. Such a simple explanation is not pos-
sible for the predictions of a deep learning model. However, feature-based approaches 
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 rely on specific features that are hand-crafted using domain knowledge. The engineer-
ing of these features requires much more effort compared to the usage of deep learning 
classifiers where all important information has to be encoded and provided to the 
model. Moreover, after the feature engineering the best combination of features has to 
be selected which is not a trivial task. 

While the feature-based and deep learning based approaches differ in their classifica-
tion capabilities, they might also provide different privacy guarantees when trained on 
shared private data. Thus, we evaluate and compare feature-based as well as deep 
learning based approaches. 

In our evaluation, we include classifiers which were developed within the SAPPAN 
project. In detail, we include the two ResNet-based classifiers [16] that we introduced 
in deliverable D3.4 (Algorithms for Analysis of Cybersecurity Data). There, we demon-
strated that our classifiers achieve better classification scores (f1-score/false positive 
rate) than the state-of-the-art classifiers proposed in related work. Note, to counteract 
the explainability problem of deep learning classifiers we developed a visual analytics 
system [17] in SAPPAN which tries to bridge the gap between the predictions of deep 
neural networks and human understandable features. 

3.2.2 Selected State-of-the-Art Classifiers 

In the following, we present several state-of-the-art classifiers which we use in different 
sharing scenarios to (1) measure the benefit of private data sharing in terms of classi-
fication performance and (2) analyze the provided level of privacy of the collaboratively 
trained classifier.  

First, we present the currently best contextless feature-based approach for DGA binary 
classification. We then continue with different types of deep learning classifiers includ-
ing convolutional (CNNs), recurrent (RNNs), and residual neural networks (ResNets). 

FANCI 

Schüppen et al. [2] proposed a system called Feature-based Automated NXDomain 
Classification and Intelligence (FANCI). It is capable of separating benign from mali-
cious domain names. FANCI implements an SVM and an RF-based classifier and 
makes use of 12 structural, 7 linguistic, and 22 statistical features for DGA binary clas-
sification. The authors of FANCI state that it uses 21 features, but feature #20 is a 
vector of 21 values, resulting in 41 values in total. The 41 features are extracted solely 
from the domain name that is to be classified. Thus, FANCI works completely context-
less. FANCI does not incorporate DGA multiclass classification support. 

Endgame 

Woodbridge et al. [5] proposed two RNN-based classifiers for the DGA binary and 
multiclass classification. Both classifiers incorporate an embedding layer, a long short-
term memory (LSTM) layer consisting of 128 hidden units with hyperbolic tangent ac-
tivation, and a final output layer. The last layer of the binary classifier is composed of 
a single output node with sigmoid activation while the last layer of the multiclass clas-
sifier consists of as many nodes as DGA families are present. We denote the binary 
classifier by B-Endgame and the multiclass classifier by M-Endgame in the following. 
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 NYU 

Yu et al. [6] proposed a DGA binary classifier that is based on two stacked one-dimen-
sional convolutional layers with 128 filters for DGA binary classification. We refer to 
this model as B-NYU in the following. We additionally adapted the binary model to a 
multiclass classifier by interchanging the last layer similarly to the M-Endgame model. 
Additionally, we use Adam [18] as optimization algorithm and the categorical cross-
entropy for computing the loss during training. We refer to the multiclass enabled model 
as M-NYU in the following. 

ResNet 

In the context of SAPPAN we developed binary and a multiclass DGA classifier based 
on ResNets [16]. We presented all details as well as a comparative evaluation with the 
state-of-the-art in deliverable D3.4 (Algorithms for Analysis of Cybersecurity Data). 
ResNets make use of so-called skip connections between convolutional layers which 
build up residual blocks. These blocks allow the gradient to bypass layers unaltered 
during the training of a classifier and thereby effectively mitigate the vanishing gradient 
problem [19, 20]. Our proposed binary classifier, B-ResNet, consists of a single resid-
ual block with 128 filters per convolutional layer while our proposed multiclass classifier 
M-ResNet has a more complex architecture of eleven residual blocks and 256 filters 
per layer. 

Class weighting 

Tran et al. [4] showed that the model of Woodbridge et al. [5] is prone to class imbal-
ances which reduce the overall classification performance of the DGA multiclass clas-
sifier. The authors mitigate the effect of class imbalances by using the proposed class 
weighting: 

 

The class weights control the magnitude of the weight updates during the training of a 
classifier. The rebalancing parameter γ denotes how much the dataset should be re-
balanced. Setting γ = 0 makes the model behave cost-insensitive, setting γ = 1 makes 
the classifier treat every class equally regardless of the actual number of samples per 
class included in the training set. Tran et al. empirically determined that γ = 0.3 works 
well for DGA multiclass classification. In all our experiments we thus use γ = 0.3 when 
working with cost-sensitive models. We denote deep learning models which incorpo-
rate class weighting with the suffix “.MI”. 

3.2.3 Evaluation Setup 

The main goals of our evaluation are (1) to determine whether we can improve the 
classification performance by leveraging different approaches for private information 
sharing, (2) to quantify the level of privacy after enabling privacy-preserving tech-
niques, and (3) to quantify the loss in utility after enabling privacy-preserving tech-
niques. 
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 For the deliverables D5.1, D5.3, and D5.5 we use the same evaluation setup (i.e. the 
same classifiers and datasets) in order to guarantee comparability of different infor-
mation sharing scenarios for the use case of DGA detection. 

Data Sources 

In total, we use five different data sources, four for obtaining benign data and one for 
malicious data. 

Malicious data 

We obtain malicious domains from the open-source intelligence feed of DGArchive [21] 
which contains more than 126 million unique domains generated by 94 different known 
DGAs. We make use of all available data up to 2020-09-01. 

Benign data 

We obtain benign labeled NXDs from three different sources, namely from networks of 
CESNET, Masaryk University (MU), and RWTH Aachen University (RWTH). For data 
obtained from each of these sources we perform a simple pre-processing step in which 
we remove all duplicates, cast every domain name to lowercase (as the DNS operates 
case-insensitive), and filter against our malicious data obtained from DGArchive to 
clean the data as far as possible. 

Additionally, we remove the intersection of all obtained samples from two of our benign 
data sources, namely from CESNET and Masaryk University. The reason for this is 
that the networks of both parties are interconnected and the recording period for data 
collection overlaps. Note, thereby we are also removing samples from both data 
sources which would naturally be present in both networks even when they were not 
interconnected. Such samples could be common typos of popular websites. This issue 
could have an effect on classification performance of classifier when samples of these 
networks are used for training or classification. However, since we record NXDs, we 
filter significantly fewer samples than if we were to record resolving DNS traffic. Thus, 
this effect could only have a negligible influence on the classification performance, but 
this has yet to be investigated. In the following we list the recording periods and the 
amount of unique samples obtained from each source for benign data. 

• CESNET - Recording from 2020-06-15, 361995 samples 
• Masaryk University - One-month recording (2020-05-15 - 2020-06-15), 

7973807 samples  
• RWTH Aachen University - One-month recording of September 2019, 

26008295 samples 

3.2.4 Sharing Scenarios 

In each deliverable (D5.1, D5.3, D5.5), we investigate different sharing scenarios for 
the use case of DGA detection. In D3.6 (Cybersecurity Data Abstraction), the set of 
benign training samples has been identified as the main privacy-critical aspect of this 
use case. The malicious data used in this use case is mostly publicly available and 
thus has no privacy constraints. In the following, we therefore focus on the sharing of 
private benign labeled data. 
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 In context of WP5, we started evaluating collaboratively trained global models without 
sharing anonymized data or local models (D5.5). Thus, we are able to present first 
evaluations in this deliverable. In total, we developed two different sharing scenarios 
which we will evaluate in the final version of this deliverable. We present the two shar-
ing scenarios in the following: 

1. Federated Learning 

In federated learning, every party that is participating in the training of a global model 
first acquires the current model which can also be a random initialized model at the 
beginning. Then, each party individually improves the current model using own private 
data and subsequently summarizes the changes to the model as a small focused up-
date. Every party distributes its model update and averages it together with the updates 
of all other participants. Using this federation step, every party is now able to apply the 
collaboratively computed update to the shared model in order to improve it. This is an 
iterative process and as many federation steps can be done until the global model 
reaches a maximum regarding classification performance on a certain validation set. 

To summarize, all participating parties train a neural network classifier collaboratively 
by applying averaged model updates to a shared global model. In this deliverable we 
investigate two different approaches for federated learning that differ in their type and 
amount of federation steps. In the following, we describe both approaches. 

a) Federation after model convergence 

In this approach, initially either a randomly initialized or a pre-trained neural network 
classifier is distributed among all participating parties. This model is used as starting 
point for all collaborating parties. The pre-trained global model can be trained based 
on public available data (e.g. Alexa or Tranco top domain names [22] for benign train-
ing samples) such that there are no concerns regarding privacy. All parties then con-
tinue the training of the initial classifier using own private data. After each locally trained 
model converges (i.e. it reaches a maximum regarding classification performance on 
a validation set) all parties compute the updates in relation to the initial model. The 
updates equal the difference of the neural network classifiers’ weights to the initial 
model. Subsequently, all updates are merged by averaging and applied to the initial 
model which yields the final global model. 

b) Federation after each training epoch 

This approach is similar compared to the previous one but differs in the type and 
amount of federation steps. Instead of training the initial model locally up to its conver-
gence, each party shares the computed update after each training epoch. Then, simi-
larly, all updates are merged by averaging and applied to the initial model which yields 
the global model for the next training epoch. All parties then continue the training of 
the updated global model for another epoch. This process is continued until the global 
model converges. 

The chosen approach for federated learning might have an influence on the global 
model’s classification performance as well as on the provided level of privacy which 
will be investigated in the final version of this deliverable. 
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 2. Teacher-Student Approach 

In this sharing scenario, we leverage the predictions of locally trained detection models 
(teachers). A party that wants to train a global model (student) has to be in the posses-
sion of a dataset for training. Samples of this potentially unlabeled dataset are used to 
query the teacher models of the other parties that are collaborating. The student model 
is then trained based on the combined predictions of the teachers. The predictions can 
be combined by the following two approaches: 

a) Soft labels 

The final label used for training the student equals the average of the teacher models’ 
confidence scores for a given input sample. 

b) Hard labels 

The final label used for training the student equals the majority vote of the teacher 
models. A tie breaker is needed with an even number of teacher models. For instance, 
the tie breaker could be whether the average of the teacher models’ confidence scores 
is above a certain threshold. 

The type of labels used for training the student model might have an influence on the 
classification performance as well as on the provided level of privacy. 

3.2.5 Evaluation: Federated Learning 

We started our evaluation with the first scenario, i.e. federated learning with federation 

after model convergence, for which we already obtained results. We are thus able to 
present these results in the following. The evaluation and comparison with the other 
sharing scenarios will be available in the final version of this deliverable. 

Experimental Setup 

For our experiments, we make use of all three sources for benign labeled data 
(CESNET, Masaryk University, and RWTH Aachen University) and malicious labeled 
data from DGArchive as described in the evaluation setup. For training an initial pre-
trained global model for federated learning, we make use of the Tranco top domains 
list that includes popular domains. In contrast to the often-used Alexa top domains list, 
Tranco is hardened against manipulation [22]. We create two pre-trained global models 
by either selecting the top most domains or by selecting a random subsample. We 
perform all federated learning experiments for all three deep learning based DGA bi-
nary detection classifiers (Endgame, NYU, and ResNet). 

Experiments 

In the following, we first describe the creation of appropriate datasets for our experi-
ments. For convenience, we provide an illustration of this process in Figure 3. 
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Figure 3: Datasets generation process for federated learning experiments. 

We subsample our malicious labeled data into a smaller set that includes at most 

10,000 samples per DGA family. If less than 10,000 samples per class are available 
we include all samples. We then split 20% of this data stratified over all included clas-
ses for the testing sets. From the remaining 80% we create malicious data used in 
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 several training sets (for training the global models as well as for the federated learning 
itself) by randomly subsampling 50% of the remaining samples. The relational is that 
by subsampling from a bigger shared pool of malicious samples we create training sets 
which include both duplicated and unique samples. We do this as in a real-world sce-
nario it is most likely that the parties which collaborate in training the global model 
share the same malicious samples. Moreover, as identified in deliverable D3.6 (Cyber-
security Data Abstraction), the set of benign training samples is the main privacy-criti-
cal aspect of this use case. Thus, benign samples are not shared between the different 
training sets. We create two balanced trainings sets for pre-trained global models, one 
by taking the top most entries of the Tranco list and one by randomly subsampling the 
list. Additionally, we create for each of our three benign data sources a balanced train-
ing set for federated learning, again, by randomly subsampling the respective data. For 
each benign source, we use the previously split 20% malicious samples and create 
appropriate balanced testing sets by adding random samples of the respective data 
(which are, however, disjoint to the benign data included in the training sets). 

Using these datasets, we are able to precisely measure the influence of federated 
learning on the classification performance of the various classifiers. As the benign train-
ing samples are identified as the main privacy-critical aspect of this use case we mainly 
use the false positive rate (FPR) as a proxy to determine the possible gain or loss in 
classification performance. For the sake of completeness, we additionally provide the 
results for the accuracy (ACC), true positive rate (TPR), false negative rate (FNR), and 
the true negative rate (TNR). Note, by using the same malicious samples in all testing 
sets we reduce their influence on the accuracy metric and can thereby measure the 
classifiers’ generalization capability on unseen benign samples that originate from dif-
ferent networks more easily. 

Using this datasets generation process we perform five repetitions for all federated 
learning experiments and average the outcomes in order to obtain meaningful results. 

In total, we evaluate two different global model (using top most and random samples 
of the Tranco list), three different classifiers (Endgame, NYU, and ResNet) and three 
participating parties (CESNET, Masaryk University, and RWTH Aachen University) for 
our federated learning experiments. 

In the following we provide an outline of the results. 

We first present baseline results in Table 1 which we use to assess the benefit of pri-
vate information sharing in the context of federated learning. In 2, we show that models 
which are trained using public data only are not able to classify the network traffic 
obtained from all three of our benign data sources (false positive rates of 28% - 74%). 
In 3, we show that our approach of continuing the training of a pre-trained global model 
using private data (where the global model was initially trained using public data) has 
no negative influence on the classifier’s classification performance compared to the 
baseline classifiers. In the Tables 4 – 6, we present the results of our federated learning 
experiments for each investigated classifier separately and compare the achieved clas-
sification scores to the baseline results. For convenience, we present the achieved 
classification results of the federated learning classifiers averaged over all testing da-
tasets and for each classifier type in 7. In 8, we investigate the influence of the number 
of participating parties in federated learning on the classification performance for each 
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 testing network separately. In 9, we present summarized results that are averaged over 
all testing datasets for convenience. 

Results 

In the following, we first present baseline results which we use to assess the benefit of 
private information sharing in the context of federated learning. To this end, we train 
for each classifier under investigation and for each party that will be collaborating in 
federated learning a distinct classifier. We then assess their performance on test sets 
which include benign samples that origin from the same network as the utilized training 
samples. We display the results in Table 1. 

Classifier Train Network Test Network ACC TPR FNR TNR FPR 

Endgame CESNET CESNET 0.99645 0.99739 0.00261 0.99550 0.00450 

NYU CESNET CESNET 0.99628 0.99748 0.00252 0.99509 0.00491 

ResNet CESNET CESNET 0.99562 0.99643 0.00357 0.99480 0.00520 

Endgame MU MU 0.99808 0.99966 0.00034 0.99650 0.00350 

NYU MU MU 0.99817 0.99965 0.00035 0.99670 0.00330 

ResNet MU MU 0.99787 0.99885 0.00115 0.99690 0.00310 

Endgame RWTH RWTH 0.99851 0.99968 0.00032 0.99733 0.00267 

NYU RWTH RWTH 0.99815 0.99916 0.00084 0.99713 0.00287 

ResNet RWTH RWTH 0.99813 0.99900 0.00100 0.99726 0.00274 

Table 1: Baseline results. 

All classifiers perform similarly well using the different training/testing set combinations. 
In general, the classifiers are best in classifying samples from the RWTH University 
networks and worst in classifying samples from the CESNET networks. 

In our next experiment, we determine the classification performance of the pre-trained 
global models that include public benign data (either top most domains or random do-
mains from the Tranco list) in their training and are used as initial global models in our 
federated learning experiments. For each classifier we thus train two global models 
and classify each testing set. We present the results of this experiment in Table 2. 
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Classifier Train Network 

Test 

Network 
ACC TPR FNR TNR FPR 

Endgame Tranco top CESNET 0.82354 0.95492 0.04508 0.69217 0.30783 

NYU Tranco top CESNET 0.77825 0.94876 0.05124 0.60775 0.39225 

ResNet Tranco top CESNET 0.78243 0.94952 0.05048 0.61534 0.38466 

Endgame Tranco top MU 0.69219 0.95492 0.04508 0.42946 0.57054 

NYU Tranco top MU 0.66667 0.94876 0.05124 0.38457 0.61543 

ResNet Tranco top MU 0.72029 0.94952 0.05048 0.49107 0.50893 

Endgame Tranco top RWTH 0.60577 0.95492 0.04508 0.25663 0.74337 

NYU Tranco top RWTH 0.62388 0.94876 0.05124 0.29901 0.70099 

ResNet Tranco top RWTH 0.83266 0.94952 0.05048 0.71581 0.28419 

Endgame Tranco random CESNET 0.80271 0.95054 0.04946 0.65488 0.34512 

NYU Tranco random CESNET 0.78195 0.94310 0.05690 0.62080 0.37920 

ResNet Tranco random CESNET 0.81406 0.93619 0.06381 0.69193 0.30807 

Endgame Tranco random MU 0.69818 0.95054 0.04946 0.44583 0.55417 

NYU Tranco random MU 0.69026 0.94310 0.05690 0.43742 0.56258 

ResNet Tranco random MU 0.75457 0.93619 0.06381 0.57295 0.42705 

Endgame Tranco random RWTH 0.61386 0.95054 0.04946 0.27719 0.72281 

NYU Tranco random RWTH 0.68084 0.94310 0.05690 0.41858 0.58142 

ResNet Tranco random RWTH 0.80826 0.93619 0.06381 0.68033 0.31967 

Table 2: Pre-trained global model results. 

Regarding the false positive rates which range from 28% to 74%, it can be seen that 
the global models that are trained using public data only are not able to classify the 
network traffic within any of networks from which we obtained benign data. 

In the following, we investigate whether our approach of continuing the training of a 
pre-trained global model using private data (where the global model was initially trained 
using public data) has any negative influence on the classifier’s classification perfor-
mance compared to the baseline classifiers. To this end, we proceed with the training 
of the global models using the training sets of each party participating in federated 
learning and subsequently classify the respective testing sets. We present the results 
of this experiment in Table 3. 
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Classifier 

Global 

Model 

Train 

Network 

Test 

Network 
ACC TPR FNR TNR FPR 

Endgame Tranco top CESNET CESNET 0.99666 0.99758 0.00242 0.99574 0.00426 

NYU Tranco top CESNET CESNET 0.99654 0.99740 0.00260 0.99568 0.00432 

ResNet Tranco top CESNET CESNET 0.99573 0.99680 0.00320 0.99465 0.00535 

Endgame Tranco top MU MU 0.99804 0.99902 0.00098 0.99706 0.00294 

NYU Tranco top MU MU 0.99810 0.99938 0.00062 0.99681 0.00319 

ResNet Tranco top MU MU 0.99788 0.99908 0.00092 0.99667 0.00333 

Endgame Tranco top RWTH RWTH 0.99839 0.99931 0.00069 0.99748 0.00252 

NYU Tranco top RWTH RWTH 0.99840 0.99938 0.00062 0.99743 0.00257 

ResNet Tranco top RWTH RWTH 0.99809 0.99894 0.00106 0.99724 0.00276 

Endgame Tranco random CESNET CESNET 0.99675 0.99751 0.00249 0.99599 0.00401 

NYU Tranco random CESNET CESNET 0.99665 0.99815 0.00185 0.99515 0.00485 

ResNet Tranco random CESNET CESNET 0.99566 0.99621 0.00379 0.99511 0.00489 

Endgame Tranco random MU MU 0.99808 0.99913 0.00087 0.99702 0.00298 

NYU Tranco random MU MU 0.99811 0.99957 0.00043 0.99666 0.00334 

ResNet Tranco random MU MU 0.99786 0.99894 0.00106 0.99679 0.00321 

Endgame Tranco random RWTH RWTH 0.99850 0.99955 0.00045 0.99746 0.00254 

NYU Tranco random RWTH RWTH 0.99848 0.99954 0.00046 0.99741 0.00259 

ResNet Tranco random RWTH RWTH 0.99820 0.99920 0.00080 0.99721 0.00279 

Table 3: Results of global models that are further trained using private data (no federation). 

These results show that there are no significant differences between the classification 
performance of the further trained models compared to the baseline classifiers inde-
pendent of the used global model. 

In the following, we present the results of our federated learning experiments. For every 
combination of participating parties (four combinations for three parties) and for every 
global model and classifier combination we train a distinct model using federated learn-
ing which we assess based on the three different testing datasets. In total, we use five 
different classification scenarios to assess the classification performance of the models 
trained using federated learning and to compare them with the baseline classifiers. In 
the following, we describe the five scenarios: 
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 1. Baseline - Average: averaged results of all baseline classifiers for a specific 
testing dataset. 

2. Baseline – Generalization: averaged results of all baseline classifiers except 
of the baseline classifier that is trained on benign samples that origin from the 
same network as the benign samples included the testing dataset. 

3. Federated Learning – Average: averaged results of all federated learning clas-
sifiers for a specific testing dataset, including every combination of participating 
parties. 

4. Federated Learning - Test Network in Federation: averaged results of feder-
ated learning classifiers for a specific testing dataset, excluding all combinations 
of participating parties that do not include the party from which the benign test-
ing samples originate from. 

5. Federated Learning – Generalization: averaged results of federated learning 
classifiers for a specific testing dataset, excluding all combinations of participat-
ing parties that do include the party from which the benign testing samples orig-
inate from. 

In Table 4, 5, and 6 we display the individual results for the Endgame, NYU, and Res-
Net classifiers, respectively. Additionally, we present the achieved classification results 
of the federated learning classifiers averaged over all testing datasets and for each 
classifier in 7 for convenience. 

Classifier Scenario 
Global 

Model 

Test 

Network 
ACC TPR FNR TNR FPR 

Endgame Baseline -  
Average 

- CESNET 0.97906 0.99891 0.00109 0.95920 0.04080 

Endgame Baseline –  
Generalization 

- CESNET 0.97036 0.99967 0.00033 0.94105 0.05895 

Endgame 
Federated 
Learning -  
Average 

Tranco 
top 

CESNET 0.98644 0.99913 0.00087 0.97376 0.02624 

Endgame 

Federated 
Learning –  
Test Network in 
Federation 

Tranco 
top 

CESNET 0.98885 0.99908 0.00092 0.97861 0.02139 

Endgame 
Federated 
Learning –  
Generalization 

Tranco 
top 

CESNET 0.97924 0.99928 0.00072 0.95920 0.04080 

Endgame 
Federated 
Learning –  
Average 

Tranco 
random 

CESNET 0.98657 0.99906 0.00094 0.97407 0.02593 

Endgame 

Federated 
Learning –  
Test Network in 
Federation 

Tranco 
random 

CESNET 0.98897 0.99895 0.00105 0.97900 0.02100 

Endgame 
Federated 
Learning –  
Generalization 

Tranco 
random 

CESNET 0.97935 0.99942 0.00058 0.95927 0.04073 
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Endgame Baseline –  

Average 
- MU 0.99519 0.99891 0.00109 0.99146 0.00854 

Endgame Baseline –  
Generalization 

- MU 0.99374 0.99853 0.00147 0.98895 0.01105 

Endgame 
Federated 
Learning –  
Average 

Tranco 
top 

MU 0.99654 0.99913 0.00087 0.99394 0.00606 

Endgame 

Federated 
Learning –  
Test Network in 
Federation 

Tranco 
top 

MU 0.99737 0.99917 0.00083 0.99556 0.00444 

Endgame 
Federated 
Learning –  
Generalization 

Tranco 
top 

MU 0.99404 0.99902 0.00098 0.98907 0.01093 

Endgame 
Federated 
Learning –  
Average 

Tranco 
random 

MU 0.99627 0.99906 0.00094 0.99348 0.00652 

Endgame 

Federated 
Learning –  
Test Network in 
Federation 

Tranco 
random 

MU 0.99724 0.99913 0.00087 0.99536 0.00464 

Endgame 
Federated 
Learning –  
Generalization 

Tranco 
random 

MU 0.99336 0.99888 0.00112 0.98783 0.01217 

Endgame Baseline –  
Average 

- RWTH 0.99747 0.99891 0.00109 0.99604 0.00396 

Endgame Baseline –  
Generalization 

- RWTH 0.99696 0.99852 0.00148 0.99539 0.00461 

Endgame 
Federated 
Learning –  
Average 

Tranco 
top 

RWTH 0.99815 0.99913 0.00087 0.99717 0.00283 

Endgame 

Federated 
Learning –  
Test Network in 
Federation 

Tranco 
top 

RWTH 0.99829 0.99916 0.00084 0.99743 0.00257 

Endgame 
Federated 
Learning –  
Generalization 

Tranco 
top 

RWTH 0.99772 0.99905 0.00095 0.99638 0.00362 

Endgame 
Federated 
Learning –  
Average 

Tranco 
random 

RWTH 0.99806 0.99906 0.00094 0.99705 0.00295 

Endgame 

Federated 
Learning –  
Test Network in 
Federation 

Tranco 
random 

RWTH 0.99825 0.99912 0.00088 0.99737 0.00263 

Endgame 
Federated 
Learning –  
Generalization 

Tranco 
random 

RWTH 0.99749 0.99889 0.00111 0.99610 0.00390 

Table 4: Endgame federated learning results. 
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Classifier Scenario 
Global 
Model 

Test 
Network 

ACC TPR FNR TNR FPR 

NYU Baseline –  
Average 

- CESNET 0.97822 0.99876 0.00124 0.95768 0.04232 

NYU Baseline –  
Generalization 

- CESNET 0.96919 0.99941 0.00059 0.93898 0.06102 

NYU 
Federated 
Learning –  
Average 

Tranco 
top 

CESNET 0.98246 0.99968 0.00032 0.96525 0.03475 

NYU 

Federated 
Learning –  
Test Network in 
Federation 

Tranco 
top 

CESNET 0.98548 0.99961 0.00039 0.97135 0.02865 

NYU 
Federated 
Learning –  
Generalization 

Tranco 
top 

CESNET 0.97341 0.99989 0.00011 0.94694 0.05306 

NYU 
Federated 
Learning –  
Average 

Tranco 
random 

CESNET 0.98243 0.99974 0.00026 0.96513 0.03487 

NYU 

Federated 
Learning –  
Test Network in 
Federation 

Tranco 
random 

CESNET 0.98560 0.99970 0.00030 0.97150 0.02850 

NYU 
Federated 
Learning –  
Generalization 

Tranco 
random 

CESNET 0.97292 0.99986 0.00014 0.94599 0.05401 

NYU Baseline –  
Average 

- MU 0.99585 0.99876 0.00124 0.99293 0.00707 

NYU Baseline –  
Generalization 

- MU 0.99469 0.99832 0.00168 0.99105 0.00895 

NYU 
Federated 
Learning –  
Average 

Tranco 
top 

MU 0.99657 0.99968 0.00032 0.99346 0.00654 

NYU 

Federated 
Learning –  
Test Network in 
Federation 

Tranco 
top 

MU 0.99720 0.99972 0.00028 0.99468 0.00532 

NYU 
Federated 
Learning –  
Generalization 

Tranco 
top 

MU 0.99469 0.99957 0.00043 0.98982 0.01018 

NYU 
Federated 
Learning –  
Average 

Tranco 
random 

MU 0.99717 0.99974 0.00026 0.99460 0.00540 



 

Page 23 of 34 

 SAPPAN – Sharing and Automation for Privacy Preserving Attack Neutralization  

WP5 

D5.5 – Global Model without Sharing Local Models, First Version 

 Holmes, 29.01.2021 

 

NYU 

Federated 
Learning –  
Test Network in 
Federation 

Tranco 
random 

MU 0.99776 0.99974 0.00026 0.99578 0.00422 

NYU 
Federated 
Learning –  
Generalization 

Tranco 
random 

MU 0.99539 0.99974 0.00026 0.99105 0.00895 

NYU Baseline –  
Average 

- RWTH 0.99719 0.99876 0.00124 0.99561 0.00439 

NYU Baseline –  
Generalization 

- RWTH 0.99671 0.99856 0.00144 0.99485 0.00515 

NYU 
Federated 
Learning –  
Average 

Tranco 
top 

RWTH 0.99803 0.99968 0.00032 0.99638 0.00362 

NYU 

Federated 
Learning –  
Test Network in 
Federation 

Tranco 
top 

RWTH 0.99835 0.99974 0.00026 0.99697 0.00303 

NYU 
Federated 
Learning –  
Generalization 

Tranco 
top 

RWTH 0.99705 0.99950 0.00050 0.99460 0.00540 

NYU 
Federated 
Learning –  
Average 

Tranco 
random 

RWTH 0.99783 0.99974 0.00026 0.99592 0.00408 

NYU 

Federated 
Learning –  
Test Network in 
Federation 

Tranco 
random 

RWTH 0.99833 0.99980 0.00020 0.99686 0.00314 

NYU 
Federated 
Learning –  
Generalization 

Tranco 
random 

RWTH 0.99633 0.99953 0.00047 0.99312 0.00688 

Table 5: NYU federated learning results. 

 

Classifier Scenario 
Global 
Model 

Test 

Network 
ACC TPR FNR TNR FPR 

ResNet Baseline –  
Average 

- CESNET 0.97865 0.99809 0.00191 0.95920 0.04080 

ResNet Baseline - 
Generalization 

- CESNET 0.97017 0.99893 0.00107 0.94140 0.05860 

ResNet 
Federated 
Learning –  
Average 

Tranco top CESNET 0.98101 0.99944 0.00056 0.96259 0.03741 

ResNet 

Federated 
Learning – 
Test Network 
in Federation 

Tranco top CESNET 0.98349 0.99938 0.00062 0.96761 0.03239 
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ResNet 

Federated 
Learning – 
Generalization 

Tranco top CESNET 0.97356 0.99961 0.00039 0.94751 0.05249 

ResNet 
Federated 
Learning –  
Average 

Tranco 
random 

CESNET 0.98232 0.99947 0.00053 0.96517 0.03483 

ResNet 

Federated 
Learning –  
Test Network 
in Federation 

Tranco 
random 

CESNET 0.98545 0.99937 0.00063 0.97152 0.02848 

ResNet 
Federated 
Learning –  
Generalization 

Tranco 
random 

CESNET 0.97295 0.99978 0.00022 0.94611 0.05389 

ResNet Baseline –  
Average 

- MU 0.99506 0.99809 0.00191 0.99202 0.00798 

ResNet Baseline –  
Generalization 

- MU 0.99365 0.99772 0.00228 0.98959 0.01041 

ResNet 
Federated 
Learning –  
Average 

Tranco top MU 0.99721 0.99944 0.00056 0.99499 0.00501 

ResNet 

Federated 
Learning –  
Test Network 
in Federation 

Tranco top MU 0.99785 0.99948 0.00052 0.99621 0.00379 

ResNet 
Federated 
Learning –  
Generalization 

Tranco top MU 0.99530 0.99930 0.00070 0.99130 0.00870 

ResNet 
Federated 
Learning – 
 Average 

Tranco 
random 

MU 0.99737 0.99947 0.00053 0.99526 0.00474 

ResNet 

Federated 
Learning –  
Test Network 
in Federation 

Tranco 
random 

MU 0.99793 0.99954 0.00046 0.99631 0.00369 

ResNet 
Federated 
Learning –  
Generalization 

Tranco 
random 

MU 0.99569 0.99926 0.00074 0.99212 0.00788 

ResNet Baseline –  
Average 

- RWTH 0.99681 0.99809 0.00191 0.99552 0.00448 

ResNet Baseline –  
Generalization 

- RWTH 0.99615 0.99764 0.00236 0.99465 0.00535 

ResNet 
Federated 
Learning –  
Average 

Tranco top RWTH 0.99798 0.99944 0.00056 0.99653 0.00347 

ResNet 

Federated 
Learning –  
Test Network 
in Federation 

Tranco top RWTH 0.99833 0.99950 0.00050 0.99717 0.00283 
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ResNet 

Federated 
Learning –  
Generalization 

Tranco top RWTH 0.99694 0.99925 0.00075 0.99463 0.00537 

ResNet 
Federated 
Learning –  
Average 

Tranco 
random 

RWTH 0.99773 0.99947 0.00053 0.99598 0.00402 

ResNet 

Federated 
Learning –  
Test Network 
in Federation 

Tranco 
random 

RWTH 0.99821 0.99957 0.00043 0.99684 0.00316 

ResNet 
Federated 
Learning –  
Generalization 

Tranco 
random 

RWTH 0.99628 0.99916 0.00084 0.99340 0.00660 

Table 6: ResNet federated learning results. 

 

Classifier Scenario 
Global 

Model 
ACC TPR FNR TNR FPR 

Endgame Baseline - Average - 0.99057 0.99891 0.00109 0.98223 0.01777 

Endgame Baseline - Generalization - 0.98702 0.99891 0.00109 0.97513 0.02487 

Endgame Federated Learning –  
Average 

Tranco 
top 

0.99371 0.99913 0.00087 0.98829 0.01171 

Endgame Federated Learning –  
Test Network in Federation 

Tranco 
top 

0.99483 0.99914 0.00086 0.99053 0.00947 

Endgame Federated Learning –  
Generalization 

Tranco 
top 

0.99033 0.99911 0.00089 0.98155 0.01845 

Endgame Federated Learning – 
 Average 

Tranco 
random 

0.99363 0.99906 0.00094 0.98820 0.01180 

Endgame Federated Learning –  
Test Network in Federation 

Tranco 
random 

0.99482 0.99907 0.00093 0.99058 0.00942 

Endgame Federated Learning –  
Generalization 

Tranco 
random 

0.99007 0.99906 0.00094 0.98107 0.01893 

NYU Baseline - Average - 0.99042 0.99876 0.00124 0.98208 0.01792 

NYU Baseline - Generalization - 0.98686 0.99876 0.00124 0.97496 0.02504 

NYU Federated Learning –  
Average 

Tranco 
top 

0.99235 0.99968 0.00032 0.98503 0.01497 

NYU Federated Learning –  
Test Network in Federation 

Tranco 
top 

0.99368 0.99969 0.00031 0.98767 0.01233 

NYU Federated Learning –  
Generalization 

Tranco 
top 

0.98838 0.99965 0.00035 0.97712 0.02288 
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NYU Federated Learning –  

Average 

Tranco 
random 

0.99248 0.99974 0.00026 0.98522 0.01478 

NYU Federated Learning –  
Test Network in Federation 

Tranco 
random 

0.99390 0.99975 0.00025 0.98805 0.01195 

NYU Federated Learning –  
Generalization 

Tranco 
random 

0.98822 0.99971 0.00029 0.97672 0.02328 

ResNet Baseline - Average - 0.99017 0.99809 0.00191 0.98225 0.01775 

ResNet Baseline - Generalization - 0.98665 0.99809 0.00191 0.97522 0.02478 

ResNet Federated Learning –  
Average 

Tranco 
top 

0.99207 0.99944 0.00056 0.98470 0.01530 

ResNet Federated Learning –  
Test Network in Federation 

Tranco 
top 

0.99322 0.99945 0.00055 0.98700 0.01300 

ResNet Federated Learning –  
Generalization 

Tranco 
top 

0.98860 0.99939 0.00061 0.97781 0.02219 

ResNet Federated Learning –  
Average 

Tranco 
random 

0.99247 0.99947 0.00053 0.98547 0.01453 

ResNet Federated Learning – 
Test Network in Federation 

Tranco 
random 

0.99386 0.99949 0.00051 0.98823 0.01177 

ResNet Federated Learning – 
Generalization 

Tranco 
random 

0.98831 0.99940 0.00060 0.97721 0.02279 

Table 7: Summary of federated learning results averaged over all testing datasets. 

We can measure a performance gain on every testing dataset and for each classifier 
type when federated learning is used regardless of the used global model compared 
to the baseline classifiers. Federated learning decreases the false positive rate and 
improves the true positive rate for every classifier in all scenarios. Thus, private infor-
mation sharing in the context of federated learning is beneficial as it clearly improves 
the classification performance. 

In detail, comparing the results of the baseline evaluation scenarios with the ones 
which make use of federated learning (regardless of the used classifier and global 
model), it can be seen that both, the false positive rate as well as the true positive rate 
improve which is also reflected in the accuracy metric. We reckon the improvement of 
the true positive rate to be caused by the additional samples per DGA family included 
in the federated learning process. These samples help in the detection of samples 
which were not seen by a classifier during training as the classifier has more data to 
learn from and thus generalizes better on new input data. 

The general improvements can be directly seen by comparing the results of the “Base-
line – Average” with the “Federated Learning – Average” scenario. 

To demonstrate the maximal possible gain in classification performance, we defined 
the “Federated Learning - Test Network in Federation” scenario. Here we present the 
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 averaged results of the federated learning classifiers that were collaboratively trained 
including the party that provides the benign testing samples. We can observe the best 
classification results here as this is the best-case scenario for federated learning.  

The worst case for the baseline classifiers as well as for the federated learning classi-
fier is the “Generalization” scenario. Here, we present the averaged results of those 
classifiers which have no access to any samples of the testing networks. Comparing 
the baseline scenario with the federated learning one we can observe again an im-
provement in true positive rates but also in false positive rates. Thus, we reckon that 
by using benign samples of different sources the classifiers trained collaboratively us-
ing federated learning generalize better on unseen input data. 

Lastly, we investigate the influence of the number of participating parties in federated 
learning on the classification performance for each testing network separately. Here, 
we only investigate the “Federated Learning - Test Network in Federation” scenario in 
order to evaluate the influence of the parties’ individual model updates in federated 
learning on the classification performance. We display the results of this experiment in 
in 8. In 9, we present summarized results that are averaged over all testing datasets 
for convenience. 

Classifier 
#Organi-
zations 

Global 

Model 

Test 

Network 
ACC TPR FNR TNR FPR 

Endgame 2 Tranco top CESNET 0.98998 0.99903 0.00097 0.98092 0.01908 

Endgame 3 Tranco top CESNET 0.98658 0.99918 0.00082 0.97398 0.02602 

Endgame 2 Tranco top MU 0.99761 0.99916 0.00084 0.99607 0.00393 

Endgame 3 Tranco top MU 0.99687 0.99918 0.00082 0.99455 0.00545 

Endgame 2 Tranco top RWTH 0.99830 0.99915 0.00085 0.99744 0.00256 

Endgame 3 Tranco top RWTH 0.99829 0.99918 0.00082 0.99739 0.00261 

Endgame 2 Tranco random CESNET 0.99007 0.99888 0.00112 0.98126 0.01874 

Endgame 3 Tranco random CESNET 0.98677 0.99907 0.00093 0.97447 0.02553 

Endgame 2 Tranco random MU 0.99738 0.99915 0.00085 0.99560 0.00440 

Endgame 3 Tranco random MU 0.99697 0.99907 0.00093 0.99487 0.00513 

Endgame 2 Tranco random RWTH 0.99827 0.99915 0.00085 0.99739 0.00261 

Endgame 3 Tranco random RWTH 0.99820 0.99907 0.00093 0.99733 0.00267 

NYU 2 Tranco top CESNET 0.98751 0.99953 0.00047 0.97548 0.02452 

NYU 3 Tranco top CESNET 0.98143 0.99976 0.00024 0.96309 0.03691 

NYU 2 Tranco top MU 0.99751 0.99969 0.00031 0.99532 0.00468 
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 NYU 3 Tranco top MU 0.99657 0.99976 0.00024 0.99339 0.00661 

NYU 2 Tranco top RWTH 0.99839 0.99973 0.00027 0.99706 0.00294 

NYU 3 Tranco top RWTH 0.99828 0.99976 0.00024 0.99679 0.00321 

NYU 2 Tranco random CESNET 0.98786 0.99964 0.00036 0.97609 0.02391 

NYU 3 Tranco random CESNET 0.98108 0.99982 0.00018 0.96234 0.03766 

NYU 2 Tranco random MU 0.99789 0.99970 0.00030 0.99608 0.00392 

NYU 3 Tranco random MU 0.99750 0.99982 0.00018 0.99518 0.00482 

NYU 2 Tranco random RWTH 0.99841 0.99980 0.00020 0.99703 0.00297 

NYU 3 Tranco random RWTH 0.99817 0.99982 0.00018 0.99652 0.00348 

ResNet 2 Tranco top CESNET 0.98542 0.99928 0.00072 0.97157 0.02843 

ResNet 3 Tranco top CESNET 0.97964 0.99958 0.00042 0.95969 0.04031 

ResNet 2 Tranco top MU 0.99788 0.99943 0.00057 0.99633 0.00367 

ResNet 3 Tranco top MU 0.99778 0.99958 0.00042 0.99598 0.00402 

ResNet 2 Tranco top RWTH 0.99833 0.99946 0.00054 0.99721 0.00279 

ResNet 3 Tranco top RWTH 0.99833 0.99958 0.00042 0.99708 0.00292 

ResNet 2 Tranco random CESNET 0.98774 0.99921 0.00079 0.97627 0.02373 

ResNet 3 Tranco random CESNET 0.98086 0.99968 0.00032 0.96203 0.03797 

ResNet 2 Tranco random MU 0.99791 0.99947 0.00053 0.99634 0.00366 

ResNet 3 Tranco random MU 0.99797 0.99968 0.00032 0.99626 0.00374 

ResNet 2 Tranco random RWTH 0.99823 0.99952 0.00048 0.99694 0.00306 

ResNet 3 Tranco random RWTH 0.99816 0.99968 0.00032 0.99664 0.00336 

Table 8: Federated learning results split by number of participating parties. 

 

Classifier #Organizations 
Global 

Model 
ACC TPR FNR TNR FPR 

Endgame 2 Tranco top 0.99530 0.99911 0.00089 0.99148 0.00852 

Endgame 3 Tranco top 0.99391 0.99918 0.00082 0.98864 0.01136 

Endgame 2 Tranco random 0.99524 0.99906 0.00094 0.99142 0.00858 
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 Endgame 3 Tranco random 0.99398 0.99907 0.00093 0.98889 0.01111 

NYU 2 Tranco top 0.99447 0.99965 0.00035 0.98929 0.01071 

NYU 3 Tranco top 0.99209 0.99976 0.00024 0.98442 0.01558 

NYU 2 Tranco random 0.99472 0.99971 0.00029 0.98973 0.01027 

NYU 3 Tranco random 0.99225 0.99982 0.00018 0.98468 0.01532 

ResNet 2 Tranco top 0.99388 0.99939 0.00061 0.98837 0.01163 

ResNet 3 Tranco top 0.99192 0.99958 0.00042 0.98425 0.01575 

ResNet 2 Tranco random 0.99463 0.99940 0.00060 0.98985 0.01015 

ResNet 3 Tranco random 0.99233 0.99968 0.00032 0.98498 0.01502 

Table 9: Summary of federated learning results split by number of participating parties. 

Regardless of the used classifier and global model the averaged results of the classi-
fiers which were trained collaboratively by only two parties achieve better classification 
scores than the federated learning classifier which was collaboratively trained by three 
parties. We reckon that this is caused by the fact that we federate the computed up-
dates of the locally trained models after all local models have converged. In case of 
federated learning in a two-party setup, the influence of the weight updates of the two 
parties on the global model decreases by adding an additional party. This is an ex-
pected outcome since we evaluate the federated learning classifiers that were collab-
oratively trained including the party that provides the benign testing samples. In the 
final version of this deliverable we will investigate whether this holds also true for fed-
erated learning models that were trained through federation after each local training 
epoch. There, the results could be different as the classifiers trained in such a scenario 
could better generalize on unseen data. 

The privacy implications caused by using private information sharing in the context of 
federated learning have to be investigated in the final version of this deliverable. 

3.2.6 Planned Privacy Analysis 

In the next iteration of this deliverable, we plan to present an evaluation of privacy in 
the DGA sharing scenarios. This includes an assessment of the existing threats against 
these scenarios which are Input Inference, more specifically Membership Inference 
and Model Inversion, Model Extraction and possibly also Poisoning attacks, as these 
mainly threaten only model correctness and not data privacy. This assessment will be 
quantified as objectively as possible, for instance by the success ratio of Membership 
Inference attacks, or by a sample distance metric as it is currently done in Deliverable 
D5.1 with the Levenshtein distance. For attacks that pose a sever threat towards pri-
vacy in sharing, sophisticated defense methods shall be evaluated, which can include 
training the model with a privacy-preserving training algorithm (e.g., with differential 
privacy [23]) before sharing model updates or hiding plain model updates with a bit-
mask computed via secure multiparty computation (SMPC). This bitmask would be 
applied before each party shares its updates and would cancel out during summation 
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 of all model updates. Privacy-preserving techniques must be evaluated and compared 
regarding the negative performance impact (e.g., loss in accuracy) they likely carry 
with them. Using a SMPC bitmask in federated learning will likely have zero impact on 
the classification performance compared to a model obtained by regular federated 
learning. 

 Application Profiling 

The background for application profiling in the context of sharing is similar in all deliv-
erables of WP5. Hence, the following paragraph can also be found in the Deliverables 
D5.1 and D5.3. 

The general idea of application and host profiling is to model the behavior of hosts and 
applications based on network data as well as system events, which was described in 
more detail in Deliverable D3.4. Based on the profiles, the idea is to detect anomalies, 
i.e. when a host or application behaves not as expected. Another use case is to use 
the profiles while investigating incidents, e.g. to classify the type of host before execut-
ing recovery steps. The application profiling can be further divided into identification 
and classification. For identification, the goal is to simply detect the operating system 
and list of applications on a host. This already works well by just monitoring DNS traffic. 
The goal of the classification task is to not only identify an application, but to compare 
the behavior of a monitored application with a reference model. This can either provide 
more detailed information, such as the application version, or information whether the 
application behaves as expected. The classification task relies more on system event 
data, e.g. monitored by the F-Secure Sensor or software like Sysmon, instead of net-
work traffic. 

3.3.1 Sharing Scenarios 

In the following, we will describe the sharing scenarios that we want to evaluate for the 

application profiling showcase. Similar to the scenarios in Deliverable D5.1, our focus 
so far was to finalize the approaches for building local models, as well as preparing the 
scenarios in the sharing context by developing tools for data sharing. In this task, no 
data and no local models are shared to build a global model. Similar to the DGA de-
tection approaches, this leaves us with two approaches: federated learning and the 
teacher-student approach. 

Federated learning is an approach to collaboratively train machine learning models. As 
described in Deliverable D5.1, this is currently not our primary focus for application 
profiling. Nonetheless, since we will experiment with federated learning in the context 
of DGA detection, we will try to apply the same approaches on the machine learning 
models we develop for application profiling, in case they yield comparable results to 
process mining. 

On the other hand, the teacher-student approach is not limited to machine learning. 
The basic idea is to label a public dataset by querying the local models (teachers) of 
organizations without sharing them. The global model (student) can then be trained 
with the labeled dataset. However, in the case of application profiling, this is only ap-
plicable if the global model is a machine learning model. Process mining does not need 
a labeled dataset as it only discovers the processes in the available data. This can be 
compared to unsupervised learning in the context of machine learning. However, when 
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 feeding the data into the process mining model, we can compute how well it fits the 
model, i.e. using a value between 0 and 1. The idea is to learn this function with a 
neural network using the teacher-student approach. However, at the time of this deliv-
erable, we did not conduct any experiments. Hence, it is unclear whether this approach 
works. 

 

4 Conclusion 

In this deliverable, we presented the first results of Task 5.3: “Federated learning of a 
global model without sharing local models”. We briefly discussed the context of this 
task within the overall scope of the SAPPAN project and explained its general concept. 
Similar as in Deliverable D3.4, this deliverable focuses on the showcase of DGA de-
tection, because it is the most mature both in WP3 as well as WP5. In detail, we first 
defined two different sharing scenarios (federated learning and the teacher-student 
approach) which each come with two different variations. We then presented our eval-
uation results for the sharing scenario “federated learning – federation after model con-
vergence” and could demonstrate that private information sharing in the context of fed-
erated learning for DGA detection is beneficial as it clearly improves the classification 
performance. In all investigated cases, federated learning decreases the false positive 
rate and improves the true positive rate for all three considered classifiers. 

In the final version of this deliverable, we plan to comparatively evaluate the remaining 
sharing scenarios for DGA detection and to conduct a privacy analysis. Since we cover 
the use case of DGA detection in all three deliverable (D5.1, D5.3, and D5.5) that are 
focusing on the creation of global models based on knowledge distribution, we will be 
able to compare the different approaches with each other. For the use case of appli-
cation profiling we plan to evaluate how well the federated learning and teacher-stu-
dent approaches work for application profiling, by comparing them with the global mod-
els developed in T5.1 and T5.3. 
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