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 Executive Summary 

This deliverable is the final version of the deliverable D5.5 which relates to the task 
T5.3 "Federated Learning of a global model without sharing local models". Its goal is 
to learn a global model, similar to the tasks T5.1 and T5.2 but using a different ap-
proach to intelligence sharing. Therefore, the deliverables D5.2, D5.4, and D5.6 have 
some overlaps, especially with respect to the background, motivation, and context 
within SAPPAN. In general, WP5 focuses on sharing and federation for cyber threat 
detection and response, and this task is one of three tasks focusing on collaborative 
learning. This deliverable focuses on different collaborative machine learning ap-
proaches to the Domain Generation Algorithm (DGA) detection methods developed in 
WP3. In detail, we conduct a comprehensive collaborative learning study for DGA) 
detection, including a total of 13,440 evaluation runs. In two real-world scenarios, we 
evaluate a total of eleven different variations of collaborative learning using three dif-
ferent state-of-the-art classifiers. We show that collaborative machine learning can re-
duce the false-positive rate (FPR) by up to 51.7%. However, while DGA detection ben-
efits from collaborative machine learning, not all approaches and classifier types profit 
equally. We conclude our comprehensive study with a discussion of the privacy threats 
implicated by the different collaborative machine learning approaches. 
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 1 Introduction 

In the deliverable D5.6, we report the continuation of our work from the initial version 
of this deliverable D5.5. In D5.5, we described the experiments and approaches to 
build a global model without sharing local models or anonymised data. For some of the 
experiments, we already presented initial results. The final results are now described 
in this document. 

This deliverable for task T5.3 has similar goals as the tasks T5.1 and T5.2, hence, a 
large part of its motivation and context is similar to the other tasks. In SAPPAN, one 
goal is to build a sharing platform that can be used for privacy-preserving sharing of 
intrusion detection data, detection models, and response handling information. This 
sharing mechanism is intended to improve the local capabilities of each participating 
organisation by collaboration. In WP3, one of the tasks is to develop local detection 
and response mechanisms. In WP5, we want to utilise these mechanisms on the global 
level to improve them using different sharing mechanisms.  

This deliverable focuses on building global detection models without sharing complete 
local models or private data. This limits the approaches to either share potentially less 
privacy-critical model updates (Federated Learning), or to provide classification as-a-
service of a global dataset without revealing the local models (Teacher-Student ap-
proach). Compared to the tasks T5.1 and T5.2, these approaches are the most privacy-
preserving ones. However, because no data or complete models can be shared, ap-
proaches to learning global models are severely limited. Still, the goal is to make use 
of collaboration to improve the local detection mechanisms. Throughout the first three 
tasks of WP5 we focus on the showcases which we developed local detection mecha-
nisms for, as well as some additional ones. In this task, we mainly focus on the use 
case of DGA detection because the collaborative machine learning approaches are 
not applicable to all showcases. We will make use of Federated Learning, which only 
requires to share model updates instead of complete models, as well as a Teacher-
Student approach, which only queries local models without revealing them or the used 
training data. 

This document is structured as follows. First, we briefly outline the context of this task 
in the overall scheme of SAPPAN project. Second, we briefly describe the general idea 
of this task and introduce the showcase of DGA detection on which this deliverable 
focuses. We present the evaluation setup used for a comparative evaluation of differ-
ent collaborative machine learning approaches to DGA detection. This setup includes 
the selected state-of-the-art machine learning classifiers, the different data sources 
used, the different sharing approaches examined, as well as a description of the meth-
odology and the evaluation scenarios. Next, we present the evaluation results and ad-
ditionally compare the approaches developed in this deliverable with the approaches 
of the deliverable D5.4 (global model based on shared local models). Afterwards, we 
discuss the privacy aspects of beneficial sharing approaches. Finally, we briefly com-
ment on the showcase of application profiling before we conclude this deliverable with 
a summary of the results. 
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 2 SAPPAN Context 

The context for building a global model in SAPPAN is similar for the first three tasks in 
WP5. Hence, the following paragraph can also be found in the deliverables D5.2 and 
D5.4. 

 

Fig. 1: SAPPAN scheme regarding local and global response and recovery. 

The overall scheme for sharing, detection, and response in SAPPAN is shown in Fig-
ure 1. The top half of the scheme describes the detection components, and the bottom 
half - the response components, while the left half corresponds to the local level, and 
the right half - to the global level. The goal of WP5 is to implement the global level with 
respect to sharing of data and models, building global models for detection, sharing of 
response and recovery information, as well as supporting visualisation. The tasks T5.1, 
T5.2, and T5.3 include the development of global models for detection, based on sev-
eral approaches. The general idea is to utilise the data and models developed in the 
Task T3.3 on the local level by sharing them among multiple organisations to build 
global detection models. The goal is to end up with global detection mechanisms that 
are superior to the local ones. Another flavour of sharing in the scope of SAPPAN is 
sharing among a cybersecurity service provider or vendor and various user groups of 
its customer organisations. In such cases, we aggregate data or local attack detection 
models built in individual endpoints. Key problems with respect to sharing are, of 
course, privacy and efficiency, which are tackled by an assortment of approaches in-
vestigated in T5.1, T5.2, and T5.3. The approaches range from sharing of anonymised 
data, to sharing of only pre-trained models, to replacing sharing by other techniques. 
We apply these techniques to several showcases similar to those described in WP3 in 
order to build global detection models with adequate recall and precision and provide 
certain levels of privacy and efficiency, including cost-efficiency. 
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 For task T5.3, we develop approaches to building global models without sharing local 
models or anonymised data. The aim is to use the shared intelligence of several or-
ganisations to create detection models that are superior to local ones, e.g., with in-
creased accuracy and reduced false positive rate. 
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 3 Federated Learning of a Global Model without Sharing Local Mod-
els 

The goal of this task is to create a global model without sharing either anonymised 
data or local models. This is the most challenging task compared to T5.1 and T5.2 
because less information is available on the global view. On the other hand, in this task 
the least amount of information is shared which might lead to the most privacy-pre-
serving approaches. The two principles for creating a global model for this task are 
Federated Learning, in which only updates to a model are shared, and the Teacher-
Student approach, in which the local models are queried using a local dataset. 

 Domain Generation Algorithm (DGA) Detection 

We use the Domain Generation Algorithm (DGA) detection use case to analyse and 
compare the benefit of private data sharing within the deliverables D5.2 (global model 
based on shared anonymised data), D5.4 (global model based on shared local mod-
els), and D5.6 (global model without sharing local models). In addition, we investigate 
the privacy implications caused by data sharing for this use case in all three delivera-
bles. As a consequence, the three deliverables share the same texts for sections that 
include general information such as DGA detection background, state-of-the-art clas-
sifiers, or parts of the evaluation setup. However, sections that depend on the different 
sharing scenarios, such as the actual evaluation and the privacy study, are listed indi-
vidually for each deliverable. 

We presented DGA detection in D3.4 (Algorithms for Analysis of Cybersecurity Data) 
in detail. Additionally, we discussed the most important aspects in the initial version of 
this deliverable. However, since the following information is essential to understand 
the evaluation and the privacy analysis, we shortly repeat the most important parts. 

Note, we have published the results of our comprehensive study on collaborative ma-
chine learning for DGA detection in the research paper "The More, the Better? A Study 
on Collaborative Machine Learning for DGA Detection" [22]. Therefore, parts of the 
following sections were previously published in and adapted from [22]. 

3.1.1 Background 

Modern botnets rely on DGAs to establish a connection to their command and control 
(C2) server. In contrast to using individual fixed IP addresses or fixed domain names, 
the communication attempt of DGA-based malware is harder to block as such malware 
generates a vast amount of algorithmically generated domains (AGDs). The botnet 
herder is aware of the generation scheme and thus is able to register a small subset 
of the generated domains in advance. The bots, however, query all generated AGDs, 
trying to obtain the valid IP address for their C2 server. As most of the queried domains 
are not registered, the queries result in non-existent domain (NXD) responses. Only 
the domains that are registered by the botnet herder in advance resolve successfully 
to a valid IP address of the C2 server.  

The occurring NXDs within a network that are caused by the non-resolvable queries 
can be analysed in order to detect DGA activities and thereby to take appropriate coun-
termeasures even before the bots can be commanded to participate in any malicious 
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 action. This detection is, however, not trivial, since NXDs can also be the product of 
typing errors, misconfigured or outdated software, or the intentional misuse of the DNS 
e.g., by antivirus software. In the following, we refer to this detection in which we sep-
arate benign from malicious domain names as the DGA binary classification task.  

In addition to this binary classification task, it is useful to not only detect malicious 
network activities but also to attribute the malicious AGDs to the specific DGAs that 
generated the domain names. This enables the malware family used to be narrowed 
down and targeted remediation measures to be taken. In the following, we refer to this 
classification as the DGA multiclass classification task. 

In the past, several approaches have been proposed to detect DGA activities within 
networks. These approaches can be split into two groups: contextless and context-
aware approaches. In SAPPAN, we focus on contextless approaches (e.g. [1, 2, 3, 4, 
5, 6]), as they entirely rely on information that can be extracted from a single domain 
name for classification. Thereby, they are less resource-intensive and less privacy-
invasive than context-aware approaches (e.g. [7, 8, 9, 10, 11, 12]) that depend on the 
extensive tracking of DNS traffic. Even though the classification of the contextless ap-
proaches relies solely on the domain name, they are able to compete with the context-
aware approaches and achieve state-of-the-art performance [1, 2, 4, 5, 6]. 

A variety of different types of machine learning techniques have been proposed for the 
classification of domain names which can be divided into two groups: feature-based 
classifiers (e.g. [2, 7]) and deep learning (featureless) classifiers (e.g. [1, 4, 5, 6]). While 
the deep learning classifiers outperform the feature-based approaches in terms of clas-
sification performance [4, 5, 13, 14, 15], their predictions cannot be explained easily. 
For example, the predictions of a decision tree can easily be traced back to the indi-
vidual features used to classify a domain name. Such a simple explanation is not pos-
sible for the predictions of a deep learning model. However, feature-based approaches 
rely on specific features that are hand-crafted using domain knowledge. The engineer-
ing of these features requires much more effort compared to the usage of deep learning 
classifiers where all important information has to be encoded and provided to the 
model. Moreover, after the feature engineering the best combination of features has to 
be selected which is not a trivial task. 

While the feature-based and deep learning based approaches differ in their classifica-
tion capabilities, they might also provide different privacy guarantees when trained on 
shared private data. Thus, we evaluate and compare feature-based as well as deep 
learning based approaches. 

In our evaluation, we include classifiers which were developed within the SAPPAN 
project. In detail, we include the two ResNet-based classifiers [16] that we introduced 
in the deliverable D3.4 (Algorithms for Analysis of Cybersecurity Data). There, we 
demonstrated that our classifiers achieve better classification scores (f1-score/false 
positive rate) than the state-of-the-art classifiers described in related work. In SAPPAN, 
we counteracted the explainability problem of deep learning classifiers by the develop-
ment of a visual analytics system [17], which tries to bridge the gap between the pre-
dictions of deep neural networks and human-understandable features. The results 
were reported in the deliverables D3.8 and D3.9. Additionally, we reported the devel-
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 oped feature-based DGA multiclass classifier EXPLAIN [23] in the SAPPAN delivera-
ble D5.2. This classifier is explainable by design, as its predictions are easier to trace 
back to features. 

3.1.2 Selected State-of-the-Art Classifiers 

In the following, we present several state-of-the-art classifiers which we use in different 
sharing scenarios to (1) measure the benefit of private data sharing in terms of classi-
fication performance and (2) analyse the provided level of privacy of the collaboratively 
trained classifier.  

First, we present the currently best contextless feature-based approach to DGA binary 
classification. We then continue with different types of deep learning classifiers includ-
ing convolutional (CNNs), recurrent (RNNs), and residual neural networks (ResNets). 

FANCI 

Schüppen et al. [2] proposed a system called Feature-based Automated NXDomain 
Classification and Intelligence (FANCI). It is capable of separating benign from mali-
cious domain names. FANCI implements an SVM and an RF-based classifier and 
makes use of 12 structural, 7 linguistic, and 22 statistical features for DGA binary clas-
sification. The authors of FANCI state that it uses 21 features, but feature #20 is a 
vector of 21 values, resulting in 41 values in total. The 41 features are extracted solely 
from the domain name that is to be classified. Thus, FANCI works completely context-
less. FANCI does not incorporate DGA multiclass classification support. 

Endgame 

Woodbridge et al. [5] proposed two RNN-based classifiers for the DGA binary and 
multiclass classification. Both classifiers incorporate an embedding layer, a long short-
term memory (LSTM) layer consisting of 128 hidden units with hyperbolic tangent ac-
tivation, and a final output layer. The last layer of the binary classifier is composed of 
a single output node with sigmoid activation while the last layer of the multiclass clas-
sifier consists of as many nodes as DGA families are present. We denote the binary 
classifier by B-Endgame and the multiclass classifier by M-Endgame in the following. 

NYU 

Yu et al. [6] proposed a DGA binary classifier that is based on two stacked one-dimen-
sional convolutional layers with 128 filters for DGA binary classification. We refer to 
this model as B-NYU in the following. We additionally adapted the binary model to a 
multiclass classifier by interchanging the last layer similarly to the M-Endgame model. 
Additionally, we use Adam [18] as optimisation algorithm and the categorical cross-
entropy for computing the loss during training. We refer to the multiclass enabled model 
as M-NYU in the following. 

ResNet 

In the context of SAPPAN we developed a binary and a multiclass DGA classifier 
based on ResNets [16]. We presented all details as well as a comparative evaluation 
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 with the state-of-the-art in the deliverable D3.4 (Algorithms for Analysis of Cybersecu-
rity Data). ResNets make use of so called skip connections between convolutional lay-
ers which build up residual blocks. These blocks allow the gradient to bypass layers 
unaltered during the training of a classifier and thereby effectively mitigate the vanish-
ing gradient problem [19, 20]. Our proposed binary classifier, B-ResNet, consists of a 
single residual block with 128 filters per convolutional layer while our proposed mul-
ticlass classifier M-ResNet has a more complex architecture of eleven residual blocks 
and 256 filters per layer. 

Class weighting 

Tran et al. [4] showed that the model of Woodbridge et al. [5] is prone to class imbal-
ances which reduce the overall classification performance of the DGA multiclass clas-
sifier. The authors mitigate the effect of class imbalances by using the proposed class 
weighting: 

 

The class weights control the magnitude of the weight updates during the training of a 
classifier. The rebalancing parameter γ denotes how much the dataset should be re-
balanced. Setting γ = 0 makes the model behave cost-insensitive, setting γ = 1 makes 
the classifier treat every class equally regardless of the actual number of samples per 
class included in the training set. Tran et al. empirically determined that γ = 0.3 works 
well for DGA multiclass classification. In all our experiments we thus use γ = 0.3 when 
working with cost-sensitive models. We denote deep learning models which incorpo-
rate class weighting with the suffix “.MI”. 

3.1.3 Data Sources 

The main goals of our evaluation are (1) to determine whether we can improve the 
classification performance by leveraging different approaches to private information 
sharing, (2) to quantify the level of privacy after enabling privacy-preserving tech-
niques, and (3) to quantify the loss in utility after enabling privacy-preserving tech-
niques. 

For the deliverables D5.2, D5.4, and D5.6 we use the same evaluation setup (i.e. the 
same classifiers and datasets) in order to guarantee comparability of different infor-
mation sharing scenarios for the use case of DGA detection. 

In total, we use five different data sources, four for obtaining benign data and one for 
malicious data. 

Malicious data 

We obtain malicious domains from the open-source intelligence feed of DGArchive [21] 
which contains more than 126 million unique domains generated by 95 different known 
DGAs. We make use of all available data up to 2020-09-01. 

 



 

Page 12 of 54 

 SAPPAN – Sharing and Automation for Privacy Preserving Attack Neutralization  

WP5 

D5.6 – Global model without sharing local models, final version 

 Arthur Drichel, 29.10.2021 

 Benign data 

We obtain benign labelled NXDs from four different sources. Three of the sources are 
networks of project partners namely CESNET, Masaryk University, and RWTH Aachen 
University. It is crucial for a comprehensive study on collaborative machine learning to 
obtain real-world data from multiple parties. Fortunately, Siemens AG, a partner in an-
other research project, provided us with additional data for our analysis. Due to this 
rich data, we are able to conduct collaborative machine learning experiments that are 
similar to a real-world setting. Moreover, the different benign data sources enable us 
to investigate whether collaboratively trained classifiers generalise well to different net-
works. 

For data obtained from each of these sources, we perform a simple pre-processing 
step in which we remove all duplicates, cast every domain name to lowercase (as the 
DNS operates case-insensitive), and filter against our malicious data obtained from 
DGArchive to clean the data as far as possible. Additionally, we remove the intersec-
tion of all obtained samples from two of our benign data sources, namely from CESNET 
and Masaryk University. The reason for this is that the networks of both parties are 
interconnected and the recording period for data collection overlaps. Note, thereby we 
are also removing samples from both data sources which would naturally be present 
in both networks even when they were not interconnected. Such samples could be 
common typos of popular websites. This issue could have an effect on the classifica-
tion performance of a classifier when samples of these networks are used for training 
or classification. However, since we record NXDs, we filter significantly fewer samples 
than if we were to record resolving DNS traffic. Thus, this effect could only have a 
negligible influence on the classification performance, but this has yet to be investi-
gated. In the following, we list the recording periods and the number of unique samples 
obtained from each source for benign data. 

RWTH Aachen University (RWTH): We obtained a one-month recording of Septem-
ber 2019 from the central DNS resolver of RWTH Aachen University which is located 
in Germany. This recording comprises approximately 26 million unique benign NXDs 
that originate from academic and administrative networks, student residences' net-
works, and networks of the university hospital of RWTH Aachen.  

Masaryk University (MU): We obtained a one-month recording from mid-May 2020 
until mid-June 2020 from the networks of Masaryk University which is located in the 
Czech Republic. This recording contains approximately 8 million unique benign sam-
ples.  

CESNET: We received additional benign samples from CESNET: an association of 
universities of the Czech Republic and the Czech Academy of Sciences consisting of 
27 members in total. CESNET operates and develops the national e-infrastructure for 
science, research, and education. From this data source, we obtained a subset of oc-
curred NXDs from the day recording of 2020-06-15. In total, we obtained approximately 
362k unique samples.  

Siemens: We obtained a one-month recording of July 2019 that comprises approxi-
mately 21 million unique NXDs from several DNS resolvers of Siemens AG which is a 
large company that operates in Asia, Europe, and the USA. 
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 3.1.4 Sharing Approaches 

In each deliverable (D5.2, D5.4, D5.6), we investigate different sharing approaches to 
the use case of DGA detection. In this deliverable, we investigate two collaborative 
learning approaches - Federated Learning and the Teacher-Student approach.  

1. Federated Learning (FL) 

In federated learning, every party that is participating in the training of a global model 
first acquires the current model which can also be a randomly initialised model at the 
beginning. Then, each party individually improves the current model using own private 
data and subsequently summarises the changes to the model as a small focused up-
date. Every party distributes its model update and averages it together with the updates 
of all other participants. Using this federation step, every party is now able to apply the 
collaboratively computed update to the shared model in order to improve it. This is an 
iterative process and as many federation steps can be done until the global model 
reaches a maximum regarding classification performance on a certain validation set.  

To summarise, all participating parties train a neural network classifier collaboratively 
by applying averaged model updates to a shared global model. In this deliverable, we 
investigate two different approaches to Federated Learning that differ in their type and 
amount of federation steps. In the following, we describe both approaches. 

a) Federation after Model Convergence 

In this approach, initially, either a randomly initialised or a pre-trained neural network 
classifier is distributed among all participating parties. This model is used as starting 
point for all collaborating parties. The pre-trained global model can be trained based 
on publicly available data (e.g., Alexa or Tranco top domain names [25] for benign 
training samples) such that there are no concerns regarding privacy. All parties then 
continue the training of the initial classifier using own private data. After each locally 
trained model converges (i.e., it reaches a maximum regarding classification perfor-
mance on a validation set) all parties compute the updates in relation to the initial 
model. The updates equal the difference of the neural network classifiers' weights to 
the initial model. Subsequently, all updates are merged by averaging and applied to 
the initial model which yields the final global model. 

b) Federation after Model Epoch 

This approach is similar compared to the previous one but differs in the type and num-
ber of federation steps. Instead of training the initial model locally up to its conver-
gence, each party shares the computed update after each training epoch. Then, simi-
larly, all updates are merged by averaging and applied to the initial model which yields 
the global model for the next training epoch. All parties then continue the training of 
the updated global model for another epoch. This process is continued until the global 
model converges.  

The chosen approach to federated learning might have an influence on the global mod-
el's classification performance as well as on the provided level of privacy. 
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 2. Teacher-Student (T/S) Approach 

In this sharing scenario, we leverage the predictions of locally trained detection models 
(teachers). A party that wants to train a global model (student) has to be in the posses-
sion of a dataset for training. Samples of this potentially unlabelled dataset are used 
to query the teacher models of the other parties that are collaborating. The student 
model is then trained based on the combined predictions of the teachers. The predic-
tions can be combined by the following two approaches: 

a) Soft Labels 

The final label used for training the student equals the average of the teacher models' 
confidence scores for a given input sample. 

b) Hard Labels 

The final label used for training the student equals the majority vote of the teacher 
models. A tie breaker is needed with an even number of teacher models. For instance, 
the tie breaker could be whether the average of the teacher models' confidence scores 
is above a certain threshold. 

The type of labels used for training the student model might have an influence on the 
classification performance as well as on the provided level of privacy. 

3.1.5 Comprehensive Collaborative Machine Learning Study 

In the following, we present a comprehensive study on collaborative machine learning 
approaches to deriving a global model without sharing local models or anonymised 
data. First, we provide an overview of our evaluation setup, including our dataset gen-
eration scheme and the evaluation methodology used. Subsequently, we present dif-
ferent sharing scenarios derived from research questions on possible real-world appli-
cation environments for trained classifiers. These sharing scenarios are used to assess 
the performance of the different sharing approaches. Finally, we present the results of 
the study including a direct comparison to the sharing approaches developed in the 
deliverable D5.4. 

3.1.5.1 Dataset Generation 

We first describe our process of generating suitable datasets for our experiments using 
the above data sources. We provide an illustration of this process in Fig. 2 for conven-
ience. 
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Fig. 2: Datasets generation scheme. 

In order to create diverse datasets and to cope with the large number of available 
training samples, we first subsample our malicious labelled data into a smaller set that 
includes at most 10k samples per DGA family. We include all samples for DGA families 
for which less than 10k samples are available. Thereby, we also include samples from 
underrepresented DGA families. We do this because in [24] we showed that by includ-
ing a few samples to the training of a classifier, its detection performance for un-
derrepresented DGAs can be increased significantly without reducing its detection 
rates for well-represented DGAs.  

From the selected subset we then split 20% (approximately 111k samples) stratified 
across all included DGA families for the test sets. For each of our benign data sources, 
we select individual malicious training data by subsampling 50% (approximately 223k 
samples) from the remaining malicious labelled samples. By subsampling from a larger 
common pool of malicious samples, we can create four training sets that contain both 
duplicate and unique malicious samples. We do this because, in a real-world scenario, 
it is very likely that the collaborating parties are using overlapping sets of malicious 



 

Page 16 of 54 

 SAPPAN – Sharing and Automation for Privacy Preserving Attack Neutralization  

WP5 

D5.6 – Global model without sharing local models, final version 

 Arthur Drichel, 29.10.2021 

 samples. Note, in contrast to the benign labelled samples, the malicious samples are 
available in public repositories and are not privacy-sensitive.  

The benign samples are not shared between different training sets as they are consid-
ered to be the main privacy-critical aspect of the collaborative DGA detection use case. 
We carry out a similar selection process for the benign training and testing samples. 
From each of the four benign data sources, we randomly subsample the same amount 
of benign training and testing samples as we did for malicious training and testing sam-
ples, respectively.  

We use these data selections to create four training and testing dataset pairs, one for 
each benign data source. To this end, we combine the respective malicious and benign 
data selections to balanced training and testing datasets. Note that during this dataset 
generation we ensured that the samples included in the training and testing datasets 
are completely disjoint. Each of the four training and testing datasets includes approx-
imately 446k and 223k samples, respectively.  

Additionally, we create two balanced training datasets that include publicly available 
benign data using the same generation process. These datasets are used to train initial 
global models for our Federated Learning experiments. The public benign data origi-
nates from the Tranco list [25] which contains a ranking of the most popular domains 
that has been hardened against manipulation. Using this data we create two datasets, 
one contains the top entries of the list, while the benign data of the other dataset con-
sists of random samples. 

3.1.5.2 Methodology and Sharing Scenarios 

Using these datasets, we are able to precisely measure the influence of collaborative 
machine learning on the classification performance of various classifiers. To obtain 
meaningful results, we repeat the whole dataset generation process five times and 
thereby create 20 individual training and testing dataset pairs which include malicious 
labelled samples from DGArchive and benign data from the four benign data sources. 
By this means, we also generate ten training datasets used in the Federated Learning 
experiments for training an initial global model using publicly available data. In the fol-
lowing, we repeat every experiment five times and present the averages of the individ-
ual results. Note, the datasets are generated similarly to a five-fold cross validation, 
i.e., the testing datasets are completely disjoint with both the training datasets and the 
testing datasets within the repetitions.  

In the following, we exclude the feature-based approach FANCI from our study and 
concentrate on the three deep learning based approaches (B-Endgame, B-NYU, and 
B-ResNet) as neither Feature Extractor Sharing (which is examined in the deliverable 
D5.4) nor Federated Learning is possible using a feature-based approach. However, 
feature-based approaches to collaborative machine learning are analysed in detail in 
the deliverable D5.2. In this work, we train all deep learning classifiers using early stop-
ping with a patience of three epochs to avoid overfitting and assess their performance 
during training on holdout sets that consist of random 5% splits of the used training 
data. 
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 Additionally, in our comprehensive collaborative machine learning study, we focus on 
DGA binary detection. The reason for this is that in D3.6 (Cybersecurity Data Abstrac-
tion), the set of benign training samples has been identified as the main privacy-critical 
aspect of this use case. The malicious data used in this use case is mostly publicly 
available and thus has no privacy constraints. The difference between the training 
samples used in the binary and multiclass classification task is that the malicious sam-
ples of the multiclass task are additionally labelled as the DGA that generated a specific 
domain. However, as this information is not privacy-sensitive we focus on the binary 
classification task. For simplicity, in the following, we always refer to the binary versions 
of the three investigated deep learning classifiers as Endgame, NYU, and ResNet. 

To measure the impact of collaborative machine learning on classification perfor-
mance, we evaluate all possible combinations of participants for each examined ap-
proach. Overall, our comprehensive study consists of 13,440 evaluation passes, 9480 
evaluations (including the baseline evaluations) are performed for this deliverable. The 
total number of individual experiments differs between the various collaborative ma-
chine learning approaches. In the following, we provide an overview of the experiments 
done per each investigated approach. We first present the baseline. 

Baseline 

All sharing approaches are compared against the baseline to evaluate their perfor-
mance. The baseline evaluations are similar to traditional training and testing of a clas-
sifier using training data from a single organisation. Each organisation trains its own 
model using its private benign data and malicious training samples from DGArchive. 
No training data is shared among any organisations and also no global model is de-
rived.  

We train one classifier for each of the four organisations and evaluate them on every 
available test dataset. To this end, we perform five repetitions of training and testing 
for four organisations (RWTH, MU, CESNET, Siemens) and three classifier models 
(Endgame, NYU, ResNet), thus perform 5 * 4 * 4 * 3 = 240 baseline evaluations in 
total. 

Federated Learning 

Federated learning (FL) [26] is a technique to train a classifier collaboratively without 
sharing local data. First, a global model is initialised that is shared among all partici-
pants in the collaborative training. This global model can either be randomly initialised 
using standard initialisation methods or can be pre-trained using non-sensitive public 
data. In this work, we evaluate FL using three different initial global models, one that 
is randomly initialised (Random Model), and two pre-trained models. For pre-training 
a global model, we make use of malicious samples from DGArchive and benign domain 
names from the Tranco list [25]. This list contains a ranking of the most popular domain 
names, which is also protected against manipulation. One pre-trained model uses the 
top entries of the Tranco list for benign domain names, while the other model uses 
random samples. In the following, we refer to these models as Tranco Top and Tranco 
Random, respectively. After the global model is shared among all participants an iter-
ative training procedure is performed. The global model is trained locally by each or-
ganisation using its private training data for each federation step. The weight updates 
to the global model in each federation step are then shared with all other participants, 
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 such that everyone can now average the weight updates of the current step and add 
them to the global classifier's weights. Thereby, each party obtains the same global 
model that is then used within the next federation step. This iterative training process 
continues until the global model converges. The only data shared between the organ-
isations are the model weight updates after each federation step and the initial global 
model. In this work, we investigate two federation approaches. In the first approach, 
we federate after each local model epoch (Federation after Model Epoch), while in 
the second approach we only federate once after all local models have converged 
(Federation after Model Convergence).  

Here, we evaluate classifiers on all four different testing datasets, regardless of the 
combination of local classifiers used. Thereby, we are able to measure the generalisa-
tion capability of classifiers on benign data from unknown networks. Hence, we perform 
five repetitions using eleven organisation combinations (when using four benign data 
sources, there are only eleven possible combinations of organisations for building a 
combined model), three initial global models (Tranco Top, Tranco Random, Random 
Model), two possibilities for federation (after Model Epoch, after Model Convergence), 
four test datasets, and three classifier models (5 * 11 * 3 * 2 * 4 * 3 = 3960 evaluation 
passes). 

Teacher-Student 

The second examined sharing approach is based on a Teacher-Student (T/S) setup. 
Here, an organisation queries trained classifiers of other organisations (teachers) in 
order to obtain labels for its data. This labelled data is then used by the querying or-
ganisation to train an own classifier (student). Using this approach, the teacher classi-
fiers are not exposed to the organisation that is training the student classifier. Thereby, 
white-box attacks against the privacy of an organisation that provides the labelling ser-
vice are not applicable. Usually, more than one teacher is involved in the labelling pro-
cess of a training sample, thus the individual labels or scores need to be combined. 
We examine two approaches: (1) majority voting on binary labels (Hard Labels) and 
(2) soft labelling by averaging confidence scores. A tie is possible when using the ma-
jority voting system with an even number of participants. In such a case, we resort to 
the soft labels approach, where we average all predictions and predict a domain name 
as malicious if the average is greater than 0.5 and benign otherwise. For this approach 
no global shared model is trained, instead, every party again derives an individual 
model. 

We train classifiers that are similar to the baseline classifiers as teacher models for this 
approach. Here, we additionally need a training dataset that is labelled by the teachers 
and used for training a student classifier. Thus, in total, we perform five repetitions 
using eleven possible organisation combinations with four training datasets, two 
teacher result combination approaches (Hard and Soft labelling), four test datasets, 
and three classifier models (5 * 11 * 4 * 2 * 4 * 3 = 5280 evaluation passes). 

Sharing Scenarios 

The sharing approaches are evaluated in different scenarios which are derived from 
research questions on possible real-world application environments for trained classi-
fiers.  
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 Best Case: In this scenario, multiple network operators jointly train a classifier and are 
mostly interested in a good performance in their own networks. This is related to the 
following research question: is collaborative training beneficial for organisations that 
mostly classify data from their own distribution? In this best-case scenario, we provide 
averaged results for classifiers that are evaluated only on the test datasets containing 
samples coming from the organisations involved in the training. 

Average Case: The average of all evaluations is used as a general performance indi-
cator of the trained classifiers for each collaborative machine learning approach. We 
use this scenario for a comparative evaluation of the different sharing approaches.  

Worst Case: The worst case scenario is contrasting the best case scenario. Here, 
classifiers are evaluated on all test datasets that contain samples from organisations 
that have not participated in the classifier training. Using this scenario, we examine the 
generalisation capability of collaboratively trained classifiers (i.e., whether the classifi-
ers improve in their detection performance for samples originating from different net-
works). 

3.1.5.3 Evaluation Results 

In this subsection, we present the results of our comprehensive study. First, we high-
light differences between the four organisations’ data and provide an overview of the 
performance in the three sharing scenarios. Subsequently, we present the results of 
our comparative evaluation. Finally, we analyse the effect of the number of participants 
in collaborative machine learning. 

Network Differences & Sharing Scenarios 

To better explain the actual evaluation steps and to detail the calculations done for the 
different sharing scenarios we present the average scores for five repetitions of the 
baseline experiment using the Endgame classifier in Table 1. We provide the results 
for the Endgame classifier as an example. The results for the NYU and ResNet models 
are similar. 

 

Table 1: Averaged baseline results for endgame classifier. 
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 Here we list the average scores for the five repetitions of Endgame classifiers per train-
ing dataset used and per test dataset separately. The true positive rates (TPRs) per 
training network are equal for all test networks as we use the same malicious samples 
within all four test datasets within a repetition. The best false positive rates (FPRs) on 
the individual test networks are always achieved by the classifiers that were trained 
using benign samples which originate from the same network as the testing samples. 
This is expected since those classifiers are specifically trained to extract and classify 
characteristics of the benign domain names from the respective network. For example, 
benign samples from different networks may miss certain features or exhibit other char-
acteristics. The average of the table entries where the train network is equal to the test 
network represents the best-case scenario and is presented at the bottom of the table. 
The classifiers trained using benign samples from distinct networks achieve different 
results for the individual test datasets. Samples from CESNET are most commonly 
classified wrong. In some cases, the FPR for these evaluations is even greater than 
6%. We reckon that this is due to the fact that the samples from this network are the 
most diverse as they originate from over 27 different organisations. Moreover, we fil-
tered out the intersection of the samples from the Masaryk University network with the 
samples from the CESNET as both networks are interconnected. Thereby, we likely 
removed easily recognisable samples that are naturally occurring in both networks. 
This could be the reason for the larger FPRs for Masaryk University and CESNET 
compared to those for the other two networks. Similarly to the best case, we provide 
the results for the average and worst case in the lower part of Table 1. While the aver-
age case is calculated using the average of all table entries, the worst case only con-
tains the results of the entries for which the train network differs from the test network. 
The results for the different sharing scenarios are not of interest for the baseline eval-
uation. As could be expected, the best case results are better than the average case 
results, which are better than the worst case results. 

Sharing Approaches 

In this section, we compare the different approaches to collaborative machine learning. 
First, for comparison and to show that training on publicly available data is not enough 
for DGA detection on private data, we display the averaged results achieved by the 
two different types of pre-trained models that we use within our Federated Learning 
experiments for all three classifier types over all test datasets in Table 2. 

 

Table 2: Results of pre-trained models using public data. 

All six trained classifiers yield high FPRs between 33% and 59%, indicating that train-
ing on publicly available data alone is insufficient for classifying privacy-sensitive do-
main names. 
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 In Table 3, we present the results for the average case, for all classifiers, and all col-
laborative machine learning approaches examined in this deliverable. 

 

Table 3: Results of the average case including all classifier types for the collaborative machine 
learning approaches of D5.6. 

In order to assess whether the collaborative training is beneficial, we additionally pro-
vide the baseline results at the top of the table. For convenience, we colour table en-
tries red if the scores are worse than the ones of the baseline and green otherwise.  

All approaches except for the FL setting Random Model - Model Convergence achieve 
better TPRs than the baseline. This is an expected outcome because the training da-
tasets used by the individual organisations contain additional malicious labelled sam-
ples from which a collaboratively trained classifier can learn. Thus, due to collabora-
tion, intelligence about additional malicious labelled training samples is combined in 
the jointly trained classifiers. The only exception is the FL setting Random Model - 
Model Convergence. In this setting, we use a randomly initialised model and federate 
the updates of the local models after they converge. While the NYU and the ResNet 
model are still functional and only achieve slightly worse classification scores, the TPR 
of the Endgame classifier falls from over 99.9% (baseline) to 55%. We reckon the rea-
son to be that the model updates from a randomly initialised model to a fully converged 
model vary quite large and the individual organisations optimise their models to differ-
ent local optima. Averaging and applying all model updates may result in a non-optimal 
global model. The Endgame model is far more affected by this compared to the CNN-
based NYU and ResNet model. This is due to the fact that RNNs are processing inputs 
sequentially. Averaging the weight updates of fully converged models that are used to 
process sequential data can thus result in a non-functional global model. 

In the following, we exclude the FL setting Random Model - Model Convergence from 
our study and mainly focus on the FPR for our assessment. All other FL scenarios lead 
to an improvement compared to the baseline results. Here, the Endgame model per-
forms significantly better in scenarios where a pre-trained initial global model was used. 
We assume that this is due to the fact that when using a pre-trained model, there are 
significantly fewer gradients towards local optima for participants to optimise their mod-
els. Similar to the FL setting Random Model - Model Convergence, this is an important 
property, especially for RNN-based classifiers. In contrast, the ResNet model achieves 
the best results using the randomly initialised model. In all FL settings, federating after 
each model epoch achieves better results than federating after model convergence. 

Ensemble classification leads to worse results than the baseline. Furthermore, it 
makes little difference whether soft or hard labels are used. 
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 While the absolute improvement achieved by collaborative machine learning may 
seem rather small, the relative reduction in the FPR is significant and could be decisive 
for the real-world application of classifiers. Compared to the baseline classifiers, the 
best FL settings achieve on average a FPR reduction of 51.7%, 27.9%, and 44.3% for 
Endgame, NYU, and ResNet, respectively.  

In summary, additional malicious samples in collaborative machine learning improve 
the TPRs for all sharing approaches. In the average-case scenario, only the collabo-
rative machine learning approach FL is advantageous for the use case of DGA detec-
tion. Using federation after model epoch leads to better results than federation after 
model convergence in FL. 

Collaboration Analysis 

In this subsection, our goal is to determine whether an increasing number of partici-
pants positively or negatively affects the classification performance of jointly trained 
classifiers. To this end, we investigate two scenarios. 

In the first scenario, we make use of the best-case scenario. Here, organisations want 
to use jointly trained classifiers to classify samples from their own networks most of the 
time. Thus, our goal is to determine whether the classification performance on those 
samples increases or decreases with an increasing number of participants. Thereby, 
organisations can decide whether or not it makes sense to use a collaboratively trained 
classifier for their own network. 

In the second scenario, which represents the worst case, we want to determine 
whether an increasing collaboration improves the generalisation capabilities of the 
classifiers and thus the classification performance on samples from external networks. 

We use the FPR as a proxy to determine the performance of the classifiers. Table 4 
presents the achieved FPR scores for the different collaborative machine learning ap-
proaches and classifier types separated by the number of participants. 
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Table 4: FPRs of the best and worst case for all classifier types and collaborative machine learn-
ing approaches of D5.6 separated by the number of participants. 

For visibility, we omit the ACC and the TPR metric, however, most of the time a better 
or worse FPR correlates with a better or worse ACC. In this evaluation, we are not 
primarily interested in comparing the achieved scores of the different approaches with 
the performance of the baseline that is presented at the top of the table. Rather, we 
are interested in whether an increasing cooperation improves or worsens the perfor-
mance achieved. Thus, we colour code the entries different to Table 3. Here, we mark 
all table entries green if they are always improving with an increasing number of par-
ticipants. When the approaches produce consecutive worse results, we colour them 
red. We do not colour any entries for approaches to which the increases or decreases 
in classification performance are not consecutive. In the following, we present the eval-
uation results for the best and worst case in detail. 

Best Case 

Most of the collaborative approaches achieve (1) worse results compared to the base-
line and (2) are decreasing in classification performance with the increasing number of 
participants. This behaviour can be explained by the fact that the baseline's best-case 
scenario is the ideal training and classification setting. I.e., the classifiers are assessed 
on data that comes from the same distribution as the samples used for training. No 
information about samples from other organisations is incorporated in these classifiers. 
Thereby, the baseline classifiers are specialised in classifying the samples that origi-
nate from the same network as the training samples used. Thus, it is not surprising that 
the baseline classifiers achieve almost the best results compared to the other ap-
proaches. The collaborative machine learning approaches, on the other hand, incor-
porate also information of samples from other networks. Thereby, they are less spe-
cialised in classifying samples from a single network but rather are more generalised 
and thus achieve worse results compared to the baseline. The fact that these ap-
proaches achieve worse results with an increasing number of participants can be ex-
plained similarly. The more participants, the less the classifiers are specialised on sam-
ples of a single network. 
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 From these results, it can be seen that none of the investigated collaborative machine 
learning approaches of this deliverable is beneficial in the best-case scenario, where 
organisations want to use collaborative machine learning classifiers to classify samples 
from their own network most of the time. However, we also explored other collaborative 
machine learning approaches in the deliverable D5.4 which improve classification per-
formance also in this particular scenario. 

Worst Case 

In this scenario, we evaluate whether an increasing number of participants improves 
the detection performance of jointly trained classifiers for samples that originate from 
external networks. Since we only have four different sources of benign data, the max-
imum number of participants in this scenario is three. 

The results obtained for the T/S approach deteriorate as the number of participants 
increases for all classifiers except for Endgame. However, the achieved rates for End-
game are worse than those of the baseline. 

For FL, the FPRs improve in all settings and for all classifiers except for Endgame 
when a randomly initialised model is used. We assume that this is due to the same 
reasons given in the average-case analysis section. The ResNet classifier, however, 
achieves the best results using a randomly initialised model. The achieved FPRs for 
Endgame and ResNet using federation after model epoch are significantly lower than 
for the approaches that make use of federation after model convergence. For the NYU 
classifier, no significant difference can be measured for the various models. 

In summary, in the worst-case scenario, only the FL approaches improve  performance 
with an increasing number of participants and achieve better scores than the baseline. 
FL with federation after model epoch achieves best results for Endgame and ResNet 
and thus generalises best to different networks. When comparing the different types of 
classifiers, Endgame and ResNet are better suited for FL than NYU. For RNN-based 
classifiers pre-trained initial models should be used. 

3.1.5.4 Direct Comparison with Approaches Developed in D5.4 (Global Models 
based on Shared Local Models) 

In this subsection, we compare the sharing approaches developed in this deliverable 
with the collaborative machine learning approaches investigated in the deliverable 
D5.4 (Global Models based on Shared Local Models). In the deliverable D5.2 (Global 
Model based on Shared Anonymised Data) we also proposed different sharing ap-
proaches. However, the focus of that deliverable was mainly on the comprehensive 
privacy study and the development of a context-less and feature-based approach to 
DGA multiclass classification that can be used as an anonymiser for domain names in 
a collaborative machine learning scenario. Hence, we only compare the approaches 
of this deliverable with the approaches investigated in D5.4. Future work could com-
pare the approaches to intelligence sharing of D5.2 with the collaborative machine 
learning approaches of D5.4 and D5.6. However, the approaches of D5.2 are less ad-
vanced compared to the approaches of D5.4 and D5.6. 
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 In addition to the 9480 evaluation passes done for the evaluation of the different shar-
ing approaches of this deliverable, we now present the results of additional 3960 eval-
uation passes done for the deliverable D5.4. Our comprehensive study thus comprises 
a total of 13,440 evaluations.  

Collaborative Machine Learning Approaches Developed in D5.4 

In the following, we shortly repeat the sharing approaches which are taken from the 
deliverable D5.4 to which we compare the performance of the collaborative machine 
learning approaches investigated in this deliverable. 

Ensemble Classification 

In Ensemble classification a global classifier is built using the classifiers trained by 
each organisation. Similar to the baseline scenario each organisation first trains a clas-
sifier using their own private benign data. These classifiers are then shared with all 
participants. Each party now combines the individual classifiers to an Ensemble clas-
sifier. Similar to the T/S approach, the combination of the classifiers can be done (1) 
by using a majority voting system on the binary labels (Hard Labels) or (2) by averag-
ing the results of the individual classifiers to a single confidence score (Soft Labels). 
When using the majority voting approach, a tie is resolved in the same way as in the 
T/S approach. 

In total there are eleven possible combinations of organisations for building a combined 
model using four different parties. Thus, we perform five repetitions using eleven pos-
sible organisation combinations, two ensemble approaches (Hard and Soft Labels), 
four test datasets, and three classifier models (5 * 11 * 2 * 4 * 3 = 1320 evaluation 
passes). 

Feature Extractor Sharing 

This sharing approach is related to Transfer Learning. All deep learning classifiers un-
der consideration use of a fully connected (dense) layer to output the final classification 
score. This layer can be viewed as a sort of classification layer that performs a logistic 
regression for binary classification. The output of this layer is a confidence score that 
indicates whether an input domain is benign (score < 0.5) or malicious (score ≥ 0.5). 
All layers before this classification layer can be treated as a feature extractor, which 
produces features used for classification by the final output layer. Instead of sharing 
the complete classifier as in the naive Ensemble approach, here, we hope to reduce 
the model’s privacy leakage by sharing fewer layers. Thus in this approach, each or-
ganisation trains a model based on their own private training data. Subsequently, the 
trained feature extractors are shared among all participants. Each organisation now 
combines its own and received feature extractors to a new model. To this end, the 
feature extractors are applied in parallel and their outputs are concatenated and flat-
tened. Additionally, a new dense classification layer is appended to the new model. 
This classification layer is not trained yet, thus the organisations freeze the weights of 
the feature extractors and use local training data to train the classification layer sepa-
rately. In the end, each organisation obtains a model which incorporates information 
about samples occurring in the other organisations through the shared feature extrac-
tors. The resulting models are not identical, since the training of the classification layer 
is performed on private training samples.  
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 For this approach, each organisation first trains a classifier using its own private benign 
data and derives an individual feature extractor. Then we combine the four feature 
extractors into eleven possible classifiers. In contrast to ensemble classification, here 
we require additional training to fit the final classification layer that combines the results 
of the shared feature extractors. Hence, in total we, perform five repetitions using 
eleven possible organisation combinations with four training datasets, four test da-
tasets, and three classifier models (5 * 11 * 4 * 4 * 3 = 2640 evaluation passes). 

Comparative Evaluation 

In the following, we compare the sharing approaches developed in this deliverable with 
the collaborative machine learning approaches investigated in the deliverable D5.4. 
For convenience, we display the results of both deliverables in summarised tables. 

Average Case 

In Table 5, we display the results of the average case including all classifier types and 
all collaborative machine learning approaches. 

 

Table 5: Results of the average case including all classifier types and all collaborative machine 
learning approaches. 

From the approaches examined in D5.4, the only approach that leads to better classi-
fication results compared to the baseline is Feature Extractor Sharing which achieves 
results that are comparable to the ones achieved by FL. 

Ensemble classification leads to worse results than the baseline. Comparing Ensemble 
classification to T/S, the T/S approach yields a lower FPR for all three classifier types. 
Furthermore, with either approach, it makes little difference whether soft or hard labels 
are used. 

In summary, in the average-case scenario, only the collaborative machine learning 
approaches Feature Extractor Sharing and FL are advantageous for the use case of 
DGA detection while additional malicious samples in collaborative machine learning 
improve the TPRs for all sharing approaches. 

Best Case 

In Table 6, we display the FPRs of the best and worst case for all classifier types and 
all collaborative machine learning approaches separated by the number of participants. 
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Table 6: FPRs of the best and worst case for all classifier types and all collaborative machine 
learning approaches separated by the number of participants. 

The only approach that improves with an increasing number of participants is Feature 
Extractor Sharing. Moreover, for all three classifier types, Feature Extractor Sharing 
achieves better FPRs than the baseline. This is because this approach creates models 
that are similar to the baseline but also incorporates additional information about sam-
ples from other networks via feature extractors that are applied in parallel. Since the 
shared feature extractors are not retrained, information about samples from individual 
networks is very well preserved with this approach. In addition, the intelligence incor-
porated in the shared feature extractors is harnessed by this approach and leads to 
improvement even beyond baseline. Note, although the differences in FPRs are rather 
small, we argue that our results are significant because of the large number of evalu-
ations done and the fact that this behaviour is observable for all three types of classifi-
ers. 

From these results, it can be seen that only Feature Extractor Sharing is beneficial in 
the best-case scenario, where organisations want to use collaborative machine learn-
ing classifiers to classify samples from their own network most of the time. 

Worst Case 

The results obtained for the Ensemble classification deteriorate as the number of par-
ticipants increases for all three classifiers.  
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 For Feature Extractor Sharing, the FPRs achieved improvement with an increased 
number of participants for all three classifier types. However, the rates are significantly 
worse than the ones achieved by Endgame and ResNet using FL with federation after 
model epoch. For NYU, the rates are comparable to those seen in the FL settings. 

In summary, in the worst-case scenario, only the Feature Extractor Sharing and FL 
approaches improve in performance with an increasing number of participants and 
achieve better scores than the baseline. FL with federation after model epoch achieves 
best results for Endgame and ResNet and thus generalises best to different networks. 

3.1.5.5 Conclusion 

In this work, we performed a comprehensive study of collaborative machine learning 
for the real-world use case of DGA detection. Thereby, we identified advantageous 
and disadvantageous approaches to different types of classifiers and showed that col-
laborative machine learning can lead to a reduction in FPR by up to 51.7%. Addition-
ally, we showed that the usage of publicly available data is insufficient for DGA detec-
tion on private data. This shows the need for privacy-preserving collaborative machine 
learning approaches. In two real-world cases, we have shown that greater participation 
in collaborative machine learning does not always lead to better classification results. 
In fact, we only assess Feature Extractor Sharing and FL of the four examined collab-
orative machine learning approaches as beneficial for DGA detection. Feature Extrac-
tor Sharing should be used if a party wants to classify samples that come from its own 
network most of the time. On the other hand, FL generalises best to unknown networks. 
The four examined collaborative machine learning variants based on T/S learning and 
Ensemble classification lead to worse results than the baseline. 

3.1.6 Privacy Analysis 

In the deliverable D3.6 (Cybersecurity Data Abstraction), the set of benign training 
samples has been identified as the main privacy-critical aspect of this use case. The 
disclosure of benign NXDs (bNXDs) may reveal end-user browsing history and behav-
iour, the usage of out-dated or misconfigured software. Further, knowledge of fre-
quently occurring bNXDs originating from typing errors may be used to register typo-
domains for a personalised phishing attack. The malicious data used in this use case 
is mostly publicly available and thus has no privacy constraints.  

Any kind of sharing activity may generate an attack surface that threatens the privacy 
of the shared object. Thus, we investigate the privacy implications of the sharing ap-
proaches in the DGA detection use case. At this point, a thorough discussion on rele-
vant privacy-threatening inference attacks against the beneficial sharing approaches 
shall complement our sharing scenario evaluation. In the deliverable D5.5 the Machine 
Learning privacy attack landscape was introduced in a brief but formal overview. The 
greatest privacy threat to our sharing approaches is the Membership Inference attack 
which aims at inferring whether or not a certain data sample was used to train the 
model and thus we focus on that attack in our defence evaluation. 

Specifically, in Federated Learning, a Membership Inference (MemI) attack against the 
globally trained model can threaten the disclosure of participation on sample level (i.e., 
the classic MemI attack [27]) as well as on client level [28]. On a high level, a privacy-
preserving model should not memorise training data while it learns from it. Assessing 



 

Page 29 of 54 

 SAPPAN – Sharing and Automation for Privacy Preserving Attack Neutralization  

WP5 

D5.6 – Global model without sharing local models, final version 

 Arthur Drichel, 29.10.2021 

 the privacy leakage of our models is analogous to quantifying their potential memori-
sation. Although such attack is performed on a shared trained model, it still has rele-
vance in this deliverable that handles sharing scenarios in which local models are not 
directly shared. 

3.1.6.1 Evaluation: Membership Inference against Federated Learning 

The Federated Learning paradigm was proposed to enhance the data privacy for par-
ticipants by reducing the exposure of their data. This alone is not sufficient, as attacks 
still threaten data privacy in Federated Learning [29, 30]. Hence, in one of the beneficial 
sharing scenarios for DGA detection, Federated Learning, Membership Inference may 
still be deployed against the shared global model. 

Defence Mechanism: Differential Privacy 

Differential Privacy (DP) [31] is a privacy mechanism that introduces noise on data 
release to hide participation of an individual. In the original definition [31] the mecha-
nism is designed for privacy-preserving data-release: any accumulative measure taken 
over a data base of individual records should not reveal that a certain individual's data 
was used to compute this measure. Masking participation by additive noise on the 
measure causes the measure computed over the entire data base and a measure 
computed over all entries except one to be indistinguishable for an attacker. The con-
cept of ε-DP describes the above formally as such: 

Pr(A(D1)∈S) ≤ eε · Pr(A(D2)∈S) 

where ε (privacy budget) bounds the closeness of output distributions of any algorithm 
A for neighbouring datasets D1 and D2. A lower ε implies a better privacy guarantee. 
The concept of DP can be transferred to Machine Learning [32], where the goal is to 
hide the use of a single data sample during training. Although model training already 
is a stochastic process, Membership Inference attacks can be successfully launched 
against trained models. The data release mechanism in Machine Learning is the gra-
dient computation based on the current model function's weight parameters and a 
batch of data. DP has successfully been integrated into existing gradient descent op-
timisers [32]. 

Obviously, this gradient will be computed multiple times during training and repeated 
data releases on the same input data will weaken the privacy guarantee as the noise 
cancels out over time. (ε, δ)-DP for repeating releases therefore uses a different formal 
notion with two parameters ε and δ: 

Pr(A(D1)∈S) ≤ eε · Pr(A(D2)∈S) + δ 

where parameter ε is again the privacy budget while δ is the probability that the privacy 
guarantee does not hold. In DP-SGD [32] all gradient updates are clipped to a fixed 
range and subsequently, random noise is applied to each gradient update. Since, 
model training involves randomness, e.g., through initialisation and batch forming, it is 
impossible to predict the training steps and therefore the amount of data releases that 
will be done. Given the clipping and noise parameters used during training, ε/δ pairs 
for DP can only be estimated retrospectively. 
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 A multitude of DP-driven research in FL exists (e.g., [33, 34, 35, 36, 37, 38]), that pro-
pose or investigate DP-based defences and on occasion examine the inherent privacy-
utility trade-off. Improvements of or alternatives to the classic DP-SGD for the FL set-
ting are proposed in [39, 40], any of which can be applied to the local training of each 
party. DP yields sound privacy guarantees w.r.t. the bounds (ε, δ), the quality of which 
are however influenced by the individual use case and its available data and hence, 
application of DP requires a further assessment of the resulting privacy/utility trade-off 
which we present here. 

Evaluation Cases 

In our assessment, we aim to measure privacy leakage as the inverse of the classifi-
cation performance of a Membership Inference attack. We would like to compare the 
cases named in the following to (1) analyse the federated models' sensitivity to such 
an attack as well as to (2) compare the latter to the baseline models (local models 
trained only by one party's data). 

In detail, the Membership Inference attack is evaluated against the following models: 

1. Baseline models trained with non-DP optimiser (undefended) 
2. Baseline models trained with DP optimiser (defensive training) 
3. Federated model trained with non-DP optimiser (undefended) 
4. Federated model trained with DP optimiser (defensive training) 

For both the baseline and the federated models, the evaluation is run against versions 
of the model with and without privacy protection, i.e., once trained with a non-DP opti-
miser and once with a DP optimiser (the DP version of the Adam optimiser [18] is 
used). Thereby, we would like to assess the utility-privacy trade-off inherent to using 
DP-SGD. For federated models, we focus on the better performing training mode which 
is federation after each local training epoch. 

Since a Membership Inference attack is a binary classification problem by itself, differ-
ent ML approaches can be chosen for the attack model, as for instance Random For-
est, Logistic Regression or K-Nearest-Neighbours. We evaluate the classifiers' perfor-
mance with the advantage metric [41] defined by: 

advantage = max{|FPR - TPR|} 

which is closely related to the AUC-ROC metric, i.e., a higher value describes a better 
performance of the attack model and therefore implies a higher data memorisation in 
the model and lower privacy guarantees. Concretely, we analyse the Membership In-
ference attack over a selected range for the clipping and noise parameters of DP-Adam 
and different Machine Learning approaches to the attack's binary classification prob-
lem. 

Results 

Results of the privacy-utility trade-off study for Membership Inference defences in Fed-
erated Learning are presented in the following. Models are trained with a mini-batch 
size of 250 samples and for 100 epochs with an early-stop after 3 consecutive epochs 
without improvement of the validation accuracy. For the application of the DP optimiser, 
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 we choose a micro-batch size of 25, i.e., per mini-batch 10 values are used to calculate 
the required noise for the gradient update computed on that mini-batch. Choosing the 
micro-batch size is a trade-off between training effort and effectiveness of the DP op-
timiser. To remain concise, we further restrict the analysis scope: (1) We only evaluate 
the ResNet architecture. (2) For clipping and noise parameters we evaluate combina-
tions of values in {0.5, 1, 2} in the baseline cases. (3) To train and evaluate the attack 
models 30,000 samples are subsampled from each of the original models' training and 
test dataset. 

Membership Inference against Baseline Models 

First, we assess the use of DP-based optimisers for the baseline models. Table 7 and 
Table 8 display the model utility after training and attacker advantage for the Member-
ship Inference attack deployed against the trained models. The baseline models reach 
conversion after only a few epochs of training, while achieving a considerable classifi-
cation performance (see Table 7). With some minor exceptions, the attack advantage 
for all target models and attack approaches lies below 0.5 (see Table 8). 

Training Data Trained Epochs Test Data Accuracy TPR FNR TNR FPR 

CESNET 3 

CESNET 0.9958 0.9975 0.0025 0.9942 0.0058 

MU 0.9950 0.9975 0.0025 0.9925 0.0075 

RWTH 0.9961 0.9975 0.0025 0.9947 0.0053 

Siemens 0.9979 0.9975 0.0025 0.9983 0.0017 

MU 
5 

CESNET 0.9738 0.9994 0.0006 0.9482 0.0518 

MU 0.9981 0.9994 0.0006 0.9969 0.0031 

RWTH 0.9964 0.9994 0.0006 0.9935 0.0065 

Siemens 0.9987 0.9994 0.0006 0.9981 0.0019 

RWTH 3 

CESNET 0.9661 0.9999 0.0001 0.9323 0.0677 

MU 0.9901 0.9999 0.0001 0.9804 0.0196 

RWTH 0.9983 0.9999 0.0001 0.9968 0.0032 

Siemens 0.9988 0.9999 0.0001 0.9978 0.0022 

Siemens 5 

CESNET 0.9697 0.9997 0.0003 0.9397 0.0603 

MU 0.9952 0.9997 0.0003 0.9907 0.0093 

RWTH 0.9963 0.9997 0.0003 0.9929 0.0071 

Siemens 0.9991 0.9997 0.0003 0.9985 0.0015 

Table 7: Utility of undefended baseline models. 
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 Training Data Attack Type Attacker Advantage 

CESNET 

Threshold Attack 0.4020 

K-Nearest-Neighbours 0.4775 

Logistic Regression 0.4099 

Random Forest 0.4511 

Multi-Layered-Perceptron 0.4031 

MU 
  

Threshold Attack 0.4495 

K-Nearest-Neighbours 0.6004 

Logistic Regression 0.4444 

Random Forest 0.5647 

Multi-Layered-Perceptron 0.4368 

RWTH 
  

Threshold Attack 0.4493 

K-Nearest-Neighbours 0.4808 

Logistic Regression 0.4455 

Random Forest 0.5028 

Multi-Layered-Perceptron 0.4359 

Siemens 
  

Threshold Attack 0.4779 

K-Nearest-Neighbours 0.6368 

Logistic Regression 0.4875 

Random Forest 0.6052 

Multi-Layered-Perceptron 0.4635 

Table 8: Advantage of membership inference attack against undefended baseline models. 

Results for the same setting where training is guided by a DP-based optimiser are held 
in Table 9 and Table 10. For each data source, nine models are trained for the different 
combinations of the clipping and noise parameters. Note, that the DP-trained models 
take up to 3-4 times longer to train (in terms of training epochs) yet lose up to 2% 
classification accuracy (see Table 9). Table 10 lists the (ε, δ) parameters with respect 
to the achievable DP guarantee. With increasing noise multiplier, we receive better 
privacy budgets (ε) for smaller δ. Compared to the undefended models, the attack ap-
proaches K-Nearest-Neighbour and Random Forest achieve higher confidence while 
the other three approaches perform worse. Higher clipping and noise values also nat-
urally reduce the attack's performance. The case with the highest clipping and noise 
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 parameters yields the worst attack classifier performance but also comes with the 
greatest loss of the target model's classification performance. 

Training 
Data 

L2 Clip-
ping 

Noise Multi-
plier 

Trained 
Epochs 

Accu-
racy 

TPR FNR TNR FPR 

CESNET 

0.5 0.5 10 0.9874 0.9912 0.0088 0.9837 0.0163 

0.5 1 14 0.9843 0.9875 0.0125 0.9812 0.0188 

0.5 2 15 0.9713 0.9814 0.0186 0.9613 0.0387 

1 0.5 10 0.9811 0.9859 0.0141 0.9764 0.0236 

1 1 12 0.9824 0.9859 0.0141 0.9790 0.0210 

1 2 12 0.9732 0.9824 0.0176 0.9639 0.0361 

2 0.5 9 0.9830 0.9876 0.0124 0.9783 0.0217 

2 1 12 0.9809 0.9877 0.0123 0.9742 0.0258 

2 2 11 0.9706 0.9810 0.0190 0.9602 0.0398 

MU 

0.5 0.5 10 0.9780 0.9934 0.0066 0.9626 0.0374 

0.5 1 8 0.9843 0.9956 0.0044 0.9730 0.0270 

0.5 2 15 0.9766 0.9936 0.0064 0.9595 0.0405 

1 0.5 11 0.9844 0.9958 0.0042 0.9731 0.0269 

1 1 9 0.9844 0.9957 0.0043 0.9731 0.0269 

1 2 14 0.9765 0.9907 0.0093 0.9623 0.0377 

2 0.5 8 0.9836 0.9947 0.0053 0.9725 0.0275 

2 1 12 0.9828 0.9952 0.0048 0.9704 0.0296 

2 2 16 0.9723 0.9917 0.0083 0.9530 0.0470 

RWTH 

0.5 0.5 11 0.9639 0.9965 0.0035 0.9314 0.0686 

0.5 1 11 0.9617 0.9981 0.0019 0.9254 0.0746 

0.5 2 4 0.9435 0.9943 0.0057 0.8927 0.1073 

1 0.5 12 0.9542 0.9968 0.0032 0.9115 0.0885 

1 1 9 0.9582 0.9974 0.0026 0.9190 0.0810 

1 2 8 0.9447 0.9980 0.0020 0.8915 0.1085 
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 2 0.5 7 0.9647 0.9977 0.0023 0.9318 0.0682 

2 1 13 0.9545 0.9971 0.0029 0.9119 0.0881 

2 2 11 0.9461 0.9960 0.0040 0.8961 0.1039 

Siemens 

0.5 0.5 7 0.9721 0.9968 0.0032 0.9474 0.0526 

0.5 1 11 0.9672 0.9971 0.0029 0.9373 0.0627 

0.5 2 15 0.9568 0.9954 0.0046 0.9183 0.0817 

1 0.5 6 0.9744 0.9971 0.0029 0.9518 0.0482 

1 1 9 0.9732 0.9976 0.0024 0.9487 0.0513 

1 2 10 0.9679 0.9961 0.0039 0.9398 0.0602 

2 0.5 9 0.9739 0.9976 0.0024 0.9503 0.0497 

2 1 9 0.9706 0.9962 0.0038 0.9450 0.0550 

2 2 8 0.9659 0.9935 0.0065 0.9383 0.0617 

Table 9: Utility of DP-trained baseline models. Performance averaged over all four test datasets. 

Training 
Data 

L2 Clip-
ping 

Noise Multi-
plier 

Delta Epsilon Attack Type 
Attacker Ad-
vantage 

CESNET 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.5 
  

0.5 
  

0.10000 0.85464 Threshold Attack 0.3847 

0.01000 2.10457 
K-Nearest-Neigh-
bours 

0.7016 

0.00100 3.23114 Logistic Regression 0.3915 

0.00010 4.30759 Random Forest 0.6369 

0.00001 5.35422 
Multi-Layered-Per-
ceptron 

0.3831 

0.5 
  

1 
  

0.10000 0.00000 Threshold Attack 0.3921 

0.01000 0.18235 
K-Nearest-Neigh-
bours 

0.7064 

0.00100 0.35947 Logistic Regression 0.3948 

0.00010 0.53659 Random Forest 0.6840 

0.00001 0.71372 
Multi-Layered-Per-
ceptron 

0.3809 

0.10000 0.00000 Threshold Attack 0.3656 
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0.5 
  

2 
  

0.01000 0.04540 
K-Nearest-Neigh-
bours 

0.6248 

0.00100 0.10430 Logistic Regression 0.3620 

0.00010 0.14658 Random Forest 0.5917 

0.00001 0.18698 
Multi-Layered-Per-
ceptron 

0.3727 

1 
  

0.5 
  

0.10000 0.85464 Threshold Attack 0.3868 

0.01000 2.10457 
K-Nearest-Neigh-
bours 

0.6003 

0.00100 3.23114 Logistic Regression 0.3828 

0.00010 4.30759 Random Forest 0.5705 

0.00001 5.35422 
Multi-Layered-Per-
ceptron 

0.3924 

1 
  

1 
  

0.10000 0.00000 Threshold Attack 0.3719 

0.01000 0.16732 
K-Nearest-Neigh-
bours 

0.5951 

0.00100 0.34444 Logistic Regression 0.3744 

0.00010 0.52156 Random Forest 0.5689 

0.00001 0.69868 
Multi-Layered-Per-
ceptron 

0.3716 

1 
  

2 
  

0.10000 0.00000 Threshold Attack 0.3570 

0.01000 0.03721 
K-Nearest-Neigh-
bours 

0.5351 

0.00100 0.09117 Logistic Regression 0.3607 

0.00010 0.13186 Random Forest 0.5237 

0.00001 0.17225 
Multi-Layered-Per-
ceptron 

0.3609 

2 
  

0.5 
  

0.10000 0.79996 Threshold Attack 0.3619 

0.01000 2.02893 
K-Nearest-Neigh-
bours 

0.4927 

0.00100 3.14419 Logistic Regression 0.3680 

0.00010 4.20519 Random Forest 0.4785 
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0.00001 5.24529 

Multi-Layered-Per-
ceptron 

0.3619 

2 
  

1 
  

0.10000 0.00000 Threshold Attack 0.3590 

0.01000 0.16732 
K-Nearest-Neigh-
bours 

0.5588 

0.00100 0.34444 Logistic Regression 0.3608 

0.00010 0.52156 Random Forest 0.5427 

0.00001 0.69868 
Multi-Layered-Per-
ceptron 

0.3587 

2 
  

2 
  

0.10000 0.00000 Threshold Attack 0.3421 

0.01000 0.03433 
K-Nearest-Neigh-
bours 

0.4455 

0.00100 0.08649 Logistic Regression 0.3468 

0.00010 0.12695 Random Forest 0.4147 

0.00001 0.16734 
Multi-Layered-Per-
ceptron 

0.3485 

MU 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.5 
  

0.5 
  

0.10000 0.85464 Threshold Attack 0.3774 

0.01000 2.10457 
K-Nearest-Neigh-
bours 

0.7076 

0.00100 3.23114 Logistic Regression 0.3863 

0.00010 4.30759 Random Forest 0.6861 

0.00001 5.35422 
Multi-Layered-Per-
ceptron 

0.3776 

0.5 
  

1 
  

0.10000 0.00000 Threshold Attack 0.3319 

0.01000 0.13726 
K-Nearest-Neigh-
bours 

0.5784 

0.00100 0.31438 Logistic Regression 0.3369 

0.00010 0.49150 Random Forest 0.5476 

0.00001 0.66862 
Multi-Layered-Per-
ceptron 

0.3291 

0.5 
  

2 
  

0.10000 0.00000 Threshold Attack 0.3414 

0.01000 0.04540 
K-Nearest-Neigh-
bours 

0.6616 
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0.00100 0.10430 Logistic Regression 0.3365 

0.00010 0.14658 Random Forest 0.6019 

0.00001 0.18698 
Multi-Layered-Per-
ceptron 

0.3385 

1 
  

0.5 
  

0.10000 0.90707 Threshold Attack 0.3599 

0.01000 2.17816 
K-Nearest-Neigh-
bours 

0.6148 

0.00100 3.31815 Logistic Regression 0.3523 

0.00010 4.41005 Random Forest 0.5928 

0.00001 5.45668 
Multi-Layered-Per-
ceptron 

0.3467 

1 
  

1 
  

0.10000 0.00000 Threshold Attack 0.3161 

0.01000 0.14477 
K-Nearest-Neigh-
bours 

0.5064 

0.00100 0.32190 Logistic Regression 0.3195 

0.00010 0.49902 Random Forest 0.4909 

0.00001 0.67614 
Multi-Layered-Per-
ceptron 

0.3229 

1 
  

2 
  

0.10000 0.00000 Threshold Attack 0.3644 

0.01000 0.04273 
K-Nearest-Neigh-
bours 

0.6305 

0.00100 0.10005 Logistic Regression 0.3621 

0.00010 0.14167 Random Forest 0.6011 

0.00001 0.18207 
Multi-Layered-Per-
ceptron 

0.3619 

2 
  

0.5 
  

0.10000 0.74525 Threshold Attack 0.3258 

0.01000 1.95325 
K-Nearest-Neigh-
bours 

0.4992 

0.00100 3.05610 Logistic Regression 0.3227 

0.00010 4.10273 Random Forest 0.4847 

0.00001 5.12087 
Multi-Layered-Per-
ceptron 

0.3349 



 

Page 38 of 54 

 SAPPAN – Sharing and Automation for Privacy Preserving Attack Neutralization  

WP5 

D5.6 – Global model without sharing local models, final version 

 Arthur Drichel, 29.10.2021 

 

2 
  

1 
  

0.10000 0.00000 Threshold Attack 0.3513 

0.01000 0.16732 
K-Nearest-Neigh-
bours 

0.5849 

0.00100 0.34444 Logistic Regression 0.3467 

0.00010 0.52156 Random Forest 0.5503 

0.00001 0.69868 
Multi-Layered-Per-
ceptron 

0.3385 

2 
  

2 
  

0.10000 0.00000 Threshold Attack 0.3476 

0.01000 0.04801 
K-Nearest-Neigh-
bours 

0.6608 

0.00100 0.10842 Logistic Regression 0.3468 

0.00010 0.15149 Random Forest 0.6469 

0.00001 0.19189 
Multi-Layered-Per-
ceptron 

0.3445 

RWTH 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.5 
  

0.5 
  

0.10000 0.90707 Threshold Attack 0.4473 

0.01000 2.17816 
K-Nearest-Neigh-
bours 

0.7775 

0.00100 3.31815 Logistic Regression 0.4440 

0.00010 4.41005 Random Forest 0.7391 

0.00001 5.45668 
Multi-Layered-Per-
ceptron 

0.4537 

0.5 
  

1 
  

0.10000 0.00000 Threshold Attack 0.4481 

0.01000 0.15980 
K-Nearest-Neigh-
bours 

0.7700 

0.00100 0.33692 Logistic Regression 0.4357 

0.00010 0.51405 Random Forest 0.7469 

0.00001 0.69117 
Multi-Layered-Per-
ceptron 

0.4465 

0.5 
  

2 
  

0.10000 0.00000 Threshold Attack 0.3486 

0.01000 0.01078 
K-Nearest-Neigh-
bours 

0.3571 

0.00100 0.05220 Logistic Regression 0.3443 
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0.00010 0.09259 Random Forest 0.3809 

0.00001 0.13299 
Multi-Layered-Per-
ceptron 

0.3496 

1 
  

0.5 
  

0.10000 0.95714 Threshold Attack 0.4495 

0.01000 2.24522 
K-Nearest-Neigh-
bours 

0.7704 

0.00100 3.40516 Logistic Regression 0.4457 

0.00010 4.50163 Random Forest 0.7541 

0.00001 5.55913 
Multi-Layered-Per-
ceptron 

0.4549 

1 
  

1 
  

0.10000 0.00000 Threshold Attack 0.4412 

0.01000 0.14477 
K-Nearest-Neigh-
bours 

0.5872 

0.00100 0.32190 Logistic Regression 0.4419 

0.00010 0.49902 Random Forest 0.5712 

0.00001 0.67614 
Multi-Layered-Per-
ceptron 

0.4360 

1 
  

2 
  

0.10000 0.00000 Threshold Attack 0.3844 

0.01000 0.02511 
K-Nearest-Neigh-
bours 

0.4576 

0.00100 0.07183 Logistic Regression 0.3308 

0.00010 0.11222 Random Forest 0.4623 

0.00001 0.15262 
Multi-Layered-Per-
ceptron 

0.3776 

2 
  

0.5 
  

0.10000 0.68714 Threshold Attack 0.4364 

0.01000 1.87371 
K-Nearest-Neigh-
bours 

0.5383 

0.00100 2.95364 Logistic Regression 0.4293 

0.00010 3.99531 Random Forest 0.5287 

0.00001 4.99644 
Multi-Layered-Per-
ceptron 

0.4479 

0.10000 0.00000 Threshold Attack 0.4440 
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2 
  

1 
  

0.01000 0.17483 
K-Nearest-Neigh-
bours 

0.7432 

0.00100 0.35196 Logistic Regression 0.4335 

0.00010 0.52908 Random Forest 0.7175 

0.00001 0.70620 
Multi-Layered-Per-
ceptron 

0.4519 

2 
  

2 
  

0.10000 0.00000 Threshold Attack 0.3935 

0.01000 0.03433 
K-Nearest-Neigh-
bours 

0.4635 

0.00100 0.08649 Logistic Regression 0.3945 

0.00010 0.12695 Random Forest 0.4656 

0.00001 0.16734 
Multi-Layered-Per-
ceptron 

0.3793 

Siemens 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.5 
  

0.5 
  

0.10000 0.68714 Threshold Attack 0.4124 

0.01000 1.87371 
K-Nearest-Neigh-
bours 

0.6847 

0.00100 2.95364 Logistic Regression 0.4100 

0.00010 3.99531 Random Forest 0.6455 

0.00001 4.99644 
Multi-Layered-Per-
ceptron 

0.4103 

0.5 
  

1 
  

0.10000 0.00000 Threshold Attack 0.3907 

0.01000 0.15980 
K-Nearest-Neigh-
bours 

0.7475 

0.00100 0.33692 Logistic Regression 0.3796 

0.00010 0.51405 Random Forest 0.7257 

0.00001 0.69117 
Multi-Layered-Per-
ceptron 

0.3832 

0.5 
  

2 
  

0.10000 0.00000 Threshold Attack 0.3825 

0.01000 0.04540 
K-Nearest-Neigh-
bours 

0.7461 

0.00100 0.10430 Logistic Regression 0.3820 

0.00010 0.14658 Random Forest 0.7315 
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0.00001 0.18698 
Multi-Layered-Per-
ceptron 

0.3931 

1 
  

0.5 
  

0.10000 0.62689 Threshold Attack 0.3454 

0.01000 1.78670 
K-Nearest-Neigh-
bours 

0.5312 

0.00100 2.85118 Logistic Regression 0.3469 

0.00010 3.87088 Random Forest 0.5161 

0.00001 4.87201 
Multi-Layered-Per-
ceptron 

0.3341 

1 
  

1 
  

0.10000 0.00000 Threshold Attack 0.3464 

0.01000 0.14477 
K-Nearest-Neigh-
bours 

0.5707 

0.00100 0.32190 Logistic Regression 0.3552 

0.00010 0.49902 Random Forest 0.5565 

0.00001 0.67614 
Multi-Layered-Per-
ceptron 

0.3297 

1 
  

2 
  

0.10000 0.00000 Threshold Attack 0.3534 

0.01000 0.03136 
K-Nearest-Neigh-
bours 

0.5444 

0.00100 0.08164 Logistic Regression 0.3572 

0.00010 0.12204 Random Forest 0.5253 

0.00001 0.16244 
Multi-Layered-Per-
ceptron 

0.3432 

2 
  

0.5 
  

0.10000 0.79996 Threshold Attack 0.3516 

0.01000 2.02893 
K-Nearest-Neigh-
bours 

0.5723 

0.00100 3.14419 Logistic Regression 0.3592 

0.00010 4.20519 Random Forest 0.5757 

0.00001 5.24529 
Multi-Layered-Per-
ceptron 

0.3529 

2 
  

1 
  

0.10000 0.00000 Threshold Attack 0.3462 

0.01000 0.14477 
K-Nearest-Neigh-
bours 

0.5337 
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 0.00100 0.32190 Logistic Regression 0.3223 

0.00010 0.49902 Random Forest 0.4941 

0.00001 0.67614 
Multi-Layered-Per-
ceptron 

0.3449 

2 
  

2 
  

0.10000 0.00000 Threshold Attack 0.3284 

0.01000 0.02511 
K-Nearest-Neigh-
bours 

0.3833 

0.00100 0.07183 Logistic Regression 0.3191 

0.00010 0.11222 Random Forest 0.3661 

0.00001 0.15262 
Multi-Layered-Per-
ceptron 

0.2997 

Table 10: Achievable ε for selected values of δ for DP-trained baseline models and advantage of 
membership inference attacks. 

Membership Inference against Federated Models 

We repeat the evaluations with and without a DP-based optimiser as a defence mech-
anism for the federated models where the weights are aggregated after each local 
training epoch. We focus on the case where all parties participate in the training proto-
col and hence provide results in a five-fold manner for more descriptiveness. In all the 
following tables, the results do not significantly differ between the different folds. Table 
11 and Table 12 display training and attack evaluation results for the undefended sce-
nario. Again, training takes more epochs to converge, in fact, each of the four parties 
performs 8-20 local epochs. Tested on each participant's local data, the final models 
achieve a classification performance better than the baseline models. Table 12 lists 
the Membership Inference attack classifier performances and surprisingly these are 
higher than 0.7 with the Random Forest approach achieving up to 0.99 advantage. To 
recite, this implies that an attack is possible that can accurately distinguish training 
data from test data and therefore disclose the data that was used to train the target 
model. 
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 Fold Trained Epochs Test Data Accuracy TPR FNR TNR FPR 

1 8 

CESNET 0.9822 0.9997 0.0003 0.9648 0.0352 

MU 0.9982 0.9997 0.0003 0.9966 0.0034 

RWTH 0.9986 0.9997 0.0003 0.9974 0.0026 

Siemens 0.9991 0.9997 0.0003 0.9986 0.0014 

2 20 

CESNET 0.9911 0.9995 0.0005 0.9826 0.0174 

MU 0.9983 0.9995 0.0005 0.9971 0.0029 

RWTH 0.9986 0.9995 0.0005 0.9977 0.0023 

Siemens 0.9990 0.9995 0.0005 0.9986 0.0014 

3 17 

CESNET 0.9909 0.9996 0.0004 0.9822 0.0178 

MU 0.9983 0.9996 0.0004 0.9970 0.0030 

RWTH 0.9986 0.9996 0.0004 0.9977 0.0023 

Siemens 0.9990 0.9996 0.0004 0.9985 0.0015 

4 16 

CESNET 0.9891 0.9996 0.0004 0.9786 0.0214 

MU 0.9983 0.9996 0.0004 0.9970 0.0030 

RWTH 0.9986 0.9996 0.0004 0.9977 0.0023 

Siemens 0.9991 0.9996 0.0004 0.9985 0.0015 

5 19 

CESNET 0.9896 0.9994 0.0006 0.9798 0.0202 

MU 0.9982 0.9994 0.0006 0.9971 0.0029 

RWTH 0.9984 0.9994 0.0006 0.9975 0.0025 

Siemens 0.9990 0.9994 0.0006 0.9987 0.0013 

Table 11: Utility of undefended federated models (5-fold). 
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 Fold Attack Type Attacker Advantage 

1 

Threshold Attack 0.7616 

K-Nearest-Neighbours 0.9023 

Logistic Regression 0.7581 

Random Forest 0.9989 

Multi-Layered-Perceptron 0.8069 

2 

Threshold Attack 0.7858 

K-Nearest-Neighbours 0.9217 

Logistic Regression 0.7800 

Random Forest 0.9995 

Multi-Layered-Perceptron 0.8585 

3 

Threshold Attack 0.7806 

K-Nearest-Neighbours 0.9019 

Logistic Regression 0.7816 

Random Forest 0.9997 

Multi-Layered-Perceptron 0.8311 

4 

Threshold Attack 0.7812 

K-Nearest-Neighbours 0.9100 

Logistic Regression 0.7735 

Random Forest 0.9991 

Multi-Layered-Perceptron 0.8393 

5 

Threshold Attack 0.7820 

K-Nearest-Neighbours 0.9088 

Logistic Regression 0.7744 

Random Forest 0.9987 

Multi-Layered-Perceptron 0.8371 

Table 12: Advantage of membership inference attack against undefended federated models (5-
fold). 
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 Table 13 and Table 14 hold results for the same federated training setup but defended 
with the DP-based optimiser. Due to the longer training (in wall clock time), exploring 
the whole space for the clipping and noise parameters is too extensive for this scope. 
Hence, the results for the DP-trained federated models are performed only for one 
case: with the clipping value of 1 and the noise multiplier of 5. On average, training 
with the DP-based optimiser does not introduce any significant increase in epochs re-
quired for training convergence (see Table 13). The influence of DP decreases the 
classification accuracy of the final model by approximately 1%. Also, the FPR reduction 
gained by the federation in the first place is lost. 

Compared to the attack against the undefended models, the usage of the DP-optimiser 
reduces the attacker's advantage by 13% on average (see Table 14). With advantages 
higher than 0.5, most attacks still perform quite well. Despite the losses in target model 
classification accuracy and FPR, the Random Forest attack models seem to be com-
pletely insensitive to the defence mechanism and remain with an advantage of > 0.99. 
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 Fold Trained Epochs Test Data Accuracy AUC-ROC TPR FNR TNR FPR 

1 22 

CESNET 0.9520 0.9520 0.9890 0.0110 0.9150 0.0850 

MU 0.9751 0.9751 0.9890 0.0110 0.9612 0.0388 

RWTH 0.9863 0.9863 0.9890 0.0110 0.9836 0.0164 

Siemens 0.9880 0.9880 0.9890 0.0110 0.9869 0.0131 

2 14 

CESNET 0.9491 0.9491 0.9867 0.0133 0.9115 0.0885 

MU 0.9683 0.9683 0.9867 0.0133 0.9500 0.0500 

RWTH 0.9843 0.9843 0.9867 0.0133 0.9819 0.0181 

Siemens 0.9843 0.9843 0.9867 0.0133 0.9819 0.0181 

3 15 

CESNET 0.9439 0.9439 0.9858 0.0142 0.9020 0.0980 

MU 0.9662 0.9662 0.9858 0.0142 0.9466 0.0534 

RWTH 0.9830 0.9830 0.9858 0.0142 0.9801 0.0199 

Siemens 0.9832 0.9832 0.9858 0.0142 0.9806 0.0194 

4 15 

CESNET 0.9501 0.9501 0.9867 0.0133 0.9135 0.0865 

MU 0.9743 0.9743 0.9867 0.0133 0.9619 0.0381 

RWTH 0.9851 0.9851 0.9867 0.0133 0.9835 0.0165 

Siemens 0.9856 0.9856 0.9867 0.0133 0.9846 0.0154 

5 16 

CESNET 0.9520 0.9520 0.9847 0.0153 0.9193 0.0807 

MU 0.9735 0.9735 0.9847 0.0153 0.9624 0.0376 

RWTH 0.9836 0.9836 0.9847 0.0153 0.9825 0.0175 

Siemens 0.9858 0.9858 0.9847 0.0153 0.9870 0.0130 

Table 13: Utility of DP-trained federated models (5-fold). 
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Fold Attack Type Attacker Advantage 

Relative Improvement Compared 
to Undefended Federation 

1 

Threshold Attack 0.5762 -0.1854 

K-Nearest-Neighbours 0.8645 -0.0378 

Logistic Regression 0.5873 -0.1708 

Random Forest 0.9993 +0.0004 

Multi-Layered-Perceptron 0.7796 -0.0273 

2 

Threshold Attack 0.5511 -0.2347 

K-Nearest-Neighbours 0.8844 -0.0373 

Logistic Regression 0.5560 -0.224 

Random Forest 0.9997 +0.0002 

Multi-Layered-Perceptron 0.8676 +0.0091 

3 

Threshold Attack 0.5463 -0.2343 

K-Nearest-Neighbours 0.8833 -0.0186 

Logistic Regression 0.5540 -0.2276 

Random Forest 0.9995 -0.0002 

Multi-Layered-Perceptron 0.7677 -0.0634 

4 

Threshold Attack 0.5561 -0.2251 

K-Nearest-Neighbours 0.8813 -0.0287 

Logistic Regression 0.5685 -0.205 

Random Forest 0.9993 +0.0002 

Multi-Layered-Perceptron 0.7999 -0.0394 

5 

Threshold Attack 0.5517 -0.2303 

K-Nearest-Neighbours 0.8800 -0.0288 

Logistic Regression 0.5501 -0.2243 

Random Forest 0.9993 +0.0006 

Multi-Layered-Perceptron 0.7729 -0.0642 

Table 14: Advantage of membership inference attack against DP-trained federated models (5-
fold). 
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 Conclusion on Membership Inference Threat Assessment 

Results from Table 14 display that the defence mechanism based on the DP-Adam 
optimiser is not sufficient to defend against the Membership inversion attack as at least 
one attack type's advantage is not reduced significantly or at all. 

As the evaluation was performed on the baseline as well as the federated models, a 
comparison with respect to the Membership Inference attack success can be drawn: 
Higher attacker advantage primarily correlates with more training epochs required for 
conversion, regardless of whether they are caused by the DP-defence or the federation 
itself. As the goal of this evaluation is to assess the federated model's relative training 
data memorisation, we quantify this by the attacker's advantage: a success metric of 
the Membership Inference attack. High advantage implies high memorisation in the 
target model and, in parallel, high memorisation correlates with the extent to which 
training data directly influence the model's weights in the training process. Hence, it is 
not surprising that the Membership Inference attack performs so badly on the unde-
fended baseline models, as these already converge after only 3-5 epochs of training. 
The defended baseline models train 3-4 times that many epochs and, therefore, the 
weights in the model are more specialised. Hence, the Membership Inference attack 
performs better and for the federated models, we observe the same. Note, however, 
that the evaluation is potentially biased by the following aspects: 

1. The evaluation set is only a medium sized subset (30,000 samples) of the avail-
able training data. 

2. Whether DP noise cancels out as an effect of weight aggregation in Federated 
Learning is not analysed here. 

3. We assumed that all parties use the same hyperparameters for local training. 
Especially for the DP-optimiser's parameters, this must not hold true in practice. 

4. Due to the extensive effort, a grid search on the parameters space of the clip-
ping and noise parameters was not performed. 

When neglecting the potential biases to the evaluation and focusing on the results at 
hand, we can conclude for the privacy-utility trade-off of the DP-based defence that a 
sacrifice of the target model's classification gain by the federation is not met by an 
equal reduction in attack performance. A local DP-defence that operates with higher 
clipping and noise parameters will most likely decrease the attacker's advantage but 
at the cost of sacrificing more utility. Due to the peak performance of the Random 
Forest attack models, Membership Inference remains a privacy threat to federated 
DGA detection models. However, in the future a more extensive evaluation is to be 
performed for a more unbiased verdict or a different defence approach must be exam-
ined. 

3.1.6.2 Other Attacks (Privacy & Security) 

In one of our disseminated works [22], we discussed further privacy and security impli-
cations, that we want to repeat here for completeness. 

Gradient Leakage 

To retain valuable contribution from parties in FL, it is crucial to ensure the non-disclo-
sure of a participant's local data. However, retaining data locality in FL is not sufficient, 
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 as [42, 43, 44] demonstrate the necessity to shield gradient updates from inspection 
by the aggregating instance(s) that may reconstruct or infer sensitive data. 

Inference attacks during the execution of the FL protocol can be rendered infeasible 
via a secure aggregation protocol [45], which computes the global average gradient in 
a secure multiparty computation (SMC) protocol that completely obstructs the inspec-
tion of local updates, thereby providing the best possible privacy. Multiple improve-
ments have been proposed (e.g., [46, 47]): With the currently best performance over-
head of O(N log(N)) per FL round [47], deploying secure aggregation is easily applica-
ble in our use case with N ≤ 4 parties. 

Byzantine Attackers 

Our work only considers the presence of trusted parties, yet for completeness we also 
give a quick view on Byzantine parties in FL [48], that are defined by arbitrary or faulty 
behaviour, including intentional misbehaviour such as privacy-threatening Free-riding 
[49] or sabotage (as in Poisoning [50] or Backdooring [51, 52]). Distributed learning in 
the Byzantine setting has been studied in [48, 53] (and larger literature bodies refer-
enced in [54, 55]). 

In [48], the authors argue that a single Byzantine user can influence any linear aggre-
gation mechanism, and therefore also model conversion, to an arbitrarily large extent 
and present their first Byzantine-tolerant defence termed Krum. Other effective de-
fences have been proposed, which are based on Krum or utilise similar insights that 
updates from malicious FL parties are separable from benign ones and can be filtered 
out [48, 50, 56, 44]. The authors of [53] propose a Byzantine-robust and Sybil-resistant 
defence. Additionally, integration of their defence mechanism was presented in [44]. 
The defence mechanism was integrated into the secure aggregation protocol by [45] 
utilising secure distance computation via homomorphic encryption (HE). 

Unfortunately, [55] provides the first insights into the incompatibility of DP-based and 
Byzantine defences. 

 Application Profiling 

We developed multiple approaches to application profiling which are described in the 
deliverable D3.5. We distinguish between two use cases, namely the identification and 
classification case. For the identification case, the goal is to identify which applications 
are running on a host based on network traffic. For this, we developed a rule-based as 
well as a process mining-based approach. The goal of the classification case is to 
determine whether an application behaves as expected, i.e., to detect anomalous be-
haviour which could be caused by malicious activity. However, for application profiling, 
we focused on the local use cases considered for WP3. Classical collaboration ap-
proaches such as the Teacher-Student approach or Federated Learning are applicable 
for machine learning, but not so much for our rule-based and process mining based 
approaches. We also experimented with deep learning for application profiling (D3.4), 
however, the other approaches showed more promising results. Hence, for WP5, we 
only continued with experiments based on shared anonymised data in the deliverable 
D5.2 when it comes to application profiling. 
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 4 Conclusion 

In this deliverable, we presented the results of task T5.3: "Federated learning of a 
global model without sharing local models". We briefly discussed the context of this 
task within the overall scope of the SAPPAN project and explained its general concept. 
Similar to the deliverable D3.4, this deliverable focuses on the showcase of DGA de-
tection because it is the most mature both in WP3 as well as WP5. 

In detail, we performed a comprehensive study of collaborative machine learning for 
the real-world use case of DGA detection and discussed the privacy implications 
caused by beneficial sharing approaches. Thereby, we identified advantageous and 
disadvantageous approaches to different types of classifiers and showed that collabo-
rative machine learning can lead to a reduction in FPR by up to 51.7%. Additionally, 
we showed that the usage of publicly available data is insufficient for DGA detection 
on private data. This shows the need for privacy-preserving collaborative machine 
learning approaches to DGA detection. In two real-world cases, we have shown that 
greater participation in collaborative training does not always lead to better classifica-
tion results. Moreover, we comparatively evaluated multiple collaborative machine 
learning approaches to DGA detection that we examined in the deliverable D5.4. In 
fact, we only assess Feature Extractor Sharing and FL of the four examined collabo-
rative machine learning approaches as beneficial for DGA detection. Feature Extractor 
Sharing should be used if a party wants to classify samples that come from their own 
network most of the time. On the other hand, FL generalises best to unknown networks. 
The four examined collaborative machine learning variants based on T/S learning and 
Ensemble classification lead to worse results than the baseline. In terms of privacy, we 
have thoroughly discussed the applicability of inference attacks for FL. 
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